来维亚,秦国民,杜小英,付安庆.冷轧塑变304不锈钢在稀硫酸中的腐蚀电化学行为[J].装备环境工程,2021,18(8):78-86. LAI Wei-ya,QIN Guo-min,DU Xiao-ying,FU An-qing.Electrochemical Behavior of Cold Rolled 304 Stainless Steel in Dilute Sulfuric Acid Solution[J].Equipment Environmental Engineering,2021,18(8):78-86.
冷轧塑变304不锈钢在稀硫酸中的腐蚀电化学行为
Electrochemical Behavior of Cold Rolled 304 Stainless Steel in Dilute Sulfuric Acid Solution
投稿时间:2021-06-04  修订日期:2021-07-17
DOI:10.7643/issn.1672-9242.2021.08.014
中文关键词:  冷轧  304不锈钢  腐蚀  电化学中图分类号:TG172 文献标识码:A 文章编号:1672-9242(2021)08-0078-09
英文关键词:cold rolled  304 stainless steel  corrosion  electrochemistry
基金项目:中石油科学研究与技术开发项目(2019D-2311)
作者单位
来维亚 石油管材及装备材料服役行为与结构安全国家重点实验室,西安 710077 
秦国民 中国石油天然气股份有限公司 大庆石化分公司,黑龙江 大庆 163714 
杜小英 中国石油天然气股份有限公司 长庆石化分公司,陕西 咸阳 712000 
付安庆 石油管材及装备材料服役行为与结构安全国家重点实验室,西安 710077 
AuthorInstitution
LAI Wei-ya State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi’an 710077, China 
QIN Guo-min Daqing Petrochemical Company, CNPC, Daqing 163714, China 
DU Xiao-ying Changqing Petrochemical Company, CNPC, Xianyang 712000, China 
FU An-qing State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, Xi’an 710077, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 通过测试不同厚度冷轧塑变304不锈钢试样在0.5 mol/L H2SO4溶液中的腐蚀电化学行为,研究腐蚀速率随位错密度、马氏体含量、残余压应力的变化规律。方法 试样板材原始厚度为5 mm,制备的冷轧试样的厚度分别为4.5、4.0、3、2.5、2.0、1.0 mm。采用Х射线衍射法测量不同厚度试样的残余奥氏体含量,再求差值,得到马氏体体积分数。通过Х射线应力测定仪测量不同厚度试样表面的残余压应力。利用IM6ex电化学工作站测试不同厚度试样的极化曲线、阻抗谱和电化学噪声,电化学噪声采用不相关的三电极电解池体系。通过电化学测试,对不同厚度冷轧塑变试样的腐蚀电化学行为进行系统研究。结果 随着冷轧厚度的递减,马氏体含量和残余压应力增加,冷轧试样马氏体含量最大值在45%左右,残余压应力最大值接近600 MPa。经电化学测试,随着冷轧厚度递减,腐蚀速率先是增加,随后又降低,腐蚀速率峰值为7.7×10‒4 A/cm2,最小值为3.2×10‒4 A/cm2。对冷轧厚度为4.0、3.0、1.0 mm的无塑变试样进行电化学噪声时域曲线、频域曲线测试分析,腐蚀速率变化趋势与极化曲线、阻抗谱测试结果一致。结论 随着冷轧厚度递减,位错密度增大,马氏体含量增加,加速了冷轧塑变试样的腐蚀。冷轧厚度很薄时,较高残余压应力与晶体取向削弱了位错密度、马氏体含量对腐蚀的影响,从而降低了腐蚀速率。
英文摘要:
      The purpose of this paper is to test the electrochemical behavior of cold rolled 304 stainless steel samples with different thickness in 0.5 mol/L H2SO4 solution, and study the corrosion rate changing with dislocation density, martensite content and residual compressive stress. The original thickness of the plate was 5 mm, and the thickness of the cold-rolled sample was 4.5 mm, 4.0 mm, 3 mm, 2.5 mm, 2.0 mm and 1.0 mm, respectively. Х ray diffraction method is used to measure residual austenite content in the different thicknesses of sample, and seeking difference worth to martensite volume fraction. Х ray stress meter is used to measure the thicknesses of different sample surface residual compressive stress. IM6ex electrochemical workstation is used to test polarization curve, impedance spectrum and electrochemical noise of samples with different thicknesses. The electrochemical noise is made up of unrelated three-electrode electrolytic cell system. Corrosion electrochemical behavior of cold rolled plastic specimens with different thicknesses is systematically studied by electrochemical test.With the decrease of the cold rolling thickness, the martensite content and residual compressive stress increases. The maximum martensite content and residual compressive stress of the cold rolling sample are approximately 45% and 600 MPa respectively. According to electrochemical test, as the thickness of cold rolling decreases, the corrosion rate first increases and then decreases, with the peak corrosion rate of 7.7 ×10‒4 A/cm2 and the minimum value of 3.2×10‒4 A/cm2. After testing and analyzing the electrochemical noise time-domain curve and frequency-domain curve of the non-plastic specimens with a thickness of 4.0 mm, 3.0 mm and 1.0 mm, the corrosion rate variation trend is consistent with the polarization curve and impedance spectrum test results. With the decrease of cold rolling thickness, dislocation density and martensite content increase, the corrosion of cold rolling specimen is accelerated. When the cold rolling thickness is very thin, the higher residual compressive stress and crystal orientation weaken the influence of dislocation density and martensite content on corrosion, thus reducing the corrosion rate.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第12774221位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号