李建,张长平,许翔,王丹,张艺伦,牟连嵩.汽车环境风洞地面区域流场数值仿真[J].装备环境工程,2023,20(8):105-113. LI Jian,ZHANG Chang-ping,XU Xiang,WANG Dan,ZHANG Yi-lun,MU Lian-song.Numerical Simulation of Ground Flow Field in Automotive Climate Wind Tunnel[J].Equipment Environmental Engineering,2023,20(8):105-113.
汽车环境风洞地面区域流场数值仿真
Numerical Simulation of Ground Flow Field in Automotive Climate Wind Tunnel
投稿时间:2023-03-14  修订日期:2023-05-10
DOI:10.7643/issn.1672-9242.2023.08.014
中文关键词:  汽车环境风洞  底盘测功机  地面区域流场  风洞试验  数值仿真  边界层  抽吸率中图分类号:U467 文献标识码:A 文章编号:1672-9242(2023)08-0105-09
英文关键词:automotive climate wind tunnel  chassis dynamometer  ground flow field  wind tunnel test  numerical simulation  boundary layer  suction rate
基金项目:天津市科技支撑重点项目(20YFZCGX00580)
作者单位
李建 河北工业大学 能源与环境工程学院,天津 300401 
张长平 河北工业大学 能源与环境工程学院,天津 300401 
许翔 中汽研天津汽车工程研究院有限公司,天津 300300 
王丹 中汽研天津汽车工程研究院有限公司,天津 300300 
张艺伦 中汽研天津汽车工程研究院有限公司,天津 300300 
牟连嵩 中汽研天津汽车工程研究院有限公司,天津 300300 
AuthorInstitution
LI Jian School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China 
ZHANG Chang-ping School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China 
XU Xiang China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China 
WANG Dan China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China 
ZHANG Yi-lun China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China 
MU Lian-song China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 探究汽车环境风洞地面区域流场规律,获取风洞边界层抽吸装置的最佳抽吸率和底盘测功机对风洞地面区域边界层厚度、风速、总压和静压的影响规律,并比较MRF法和旋转壁面法对底盘测功机转毂转动模拟的精度。方法 运用计算流体动力学方法对汽车环境风洞流场进行数值仿真计算。结果 边界层抽吸装置对应于喷口风速120 km/h时的最佳抽吸率为0.048。底盘测功机区域总压呈现下降趋势。相比于存在底盘测功机,汽车环境风洞无底盘测功机时,底盘测功机区域内相同位置的边界层厚度会增加1.28~ 12.22 mm。在前转毂的前侧、上侧、后侧和后转毂的上侧和后侧会有一个高风速区域,区域内风速比设定风速高1%~4%,与无底盘测功机相比,区域内静压值低0.32~46.02 Pa。在前后转毂前侧和后侧与地面相连接的凹部会有一个低风速区域,区域内风速比设定风速低1%~5%,与无底盘测功机相比,区域内静压值高0.08~49.34 Pa。底盘测功机转毂的转动会使附近区域的地面边界层厚度变大。在前转毂前侧,采用旋转壁面法进行模拟比MRF法地面边界层厚度增加近8 mm,而在其他位置,2种模拟方法对边界层厚度的模拟差别在1.5 mm以内。使用MRF法和旋转壁面法对底盘测功机区域风速和静压分布的模拟精度一致,而旋转壁面法对总压趋势的模拟更加准确。结论 底盘测功机会对地面区域一定范围内边界层厚度、风速、总压和静压产生影响,旋转壁面法比MRF法更适合底盘测功机区域地面边界层厚度、风速、总压和静压的模拟。
英文摘要:
      Automotive climate wind tunnel test is an essential test in the process of automotive research and development. The chassis dynamometer in wind tunnel will affect the accuracy of wind tunnel test results to some extent. The work aims to explore the flow field law in the ground area of the automobile climate wind tunnel, obtain the optimal suction rate of the boundary layer suction device in the wind tunnel and the effect law of the chassis dynamometer on the boundary layer thickness, wind speed, total pressure and static pressure in the wind tunnel ground area, and compare the accuracy of the MRF method and the rotating wall method in the simulation of the hub rotation of the chassis dynamometer. The CFD method was used to simulate the flow field in the automobile climate wind tunnel. The optimal suction rate of the boundary layer suction device corresponding to the nozzle wind speed of 120 km/h is 0.048. The total pressure in the chassis dynamometer area showed a downward trend. Compared with the presence of chassis dynamometer, when there was no chassis dynamometer in the automotive climate wind tunnel, the boundary layer thickness at the same position in the chassis dynamometer area increased by 1.28~ 12.22 mm. There was a high wind speed area on the front, upper and rear sides of the front hub and the upper and rear sides of the rear hub. The wind speed in the area was about 1%~4% higher than the set wind speed. Compared to the absence of the chassis dynamometer, the static pressure value in the area was lower by 0.32~46.02 Pa. There was a low wind speed area in the concave part connected with the ground at the front and rear sides of the front and rear rotating hub. The wind speed in the area was about 1%~5% lower than the set wind speed. Compared to the absence of the chassis dynamometer, the static pressure value in the area was higher by 0.08~49.34 Pa. The hub rotation of chassis dynamometer increased the thickness of the ground boundary layer in the nearby area. At the front of the hub, the thickness of the ground boundary layer increased by nearly 8 mm by using the rotating wall method compared with the MRF method. In other positions, the difference between the two simulation methods for the boundary layer thickness was less than 1.5 mm. MRF method and rotating wall method had the same accuracy in the simulation of wind speed and static pressure distribution in the chassis dynamometer region, while the rotating wall method was more accurate in the simulation of total pressure trend. Chassis dynamometer will affect boundary layer thickness, wind speed, total pressure and static pressure in a certain range of ground area. The rotating wall method is more suitable for the simulation of ground boundary layer thickness, wind speed, total pressure and static pressure in chassis dynamometer area than MRF method.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第12765260位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号