郭俊伶,彭志凌,班伟.基于遗传BP算法预测贮存寿命[J].装备环境工程,2024,21(8):32-38. GUO Junling,PENG Zhiling,BAN Wei.Prediction of Storage Life Based on Genetic BP Algorithm[J].Equipment Environmental Engineering,2024,21(8):32-38.
基于遗传BP算法预测贮存寿命
Prediction of Storage Life Based on Genetic BP Algorithm
投稿时间:2024-06-13  修订日期:2024-07-13
DOI:10.7643/issn.1672-9242.2024.08.005
中文关键词:  步加试验  BP神经网络  遗传算法  恒湿步温  环境因子  Arrhenius 模型中图分类号:TJ430 文献标志码:A 文章编号:1672-9242(2024)08-0032-07
英文关键词:step test  BP neural network  genetic algorithm  constant humidity step temperature  environmental factor  Arrhenius model
基金项目:
作者单位
郭俊伶 中北大学 机电工程学院,太原 030051 
彭志凌 中北大学 机电工程学院,太原 030051 
班伟 宜昌测试技术研究所,湖北 宜昌 443003 
AuthorInstitution
GUO Junling School of Mechanical and Electrical Engineering, North University of China, Taiyuan 030051, China 
PENG Zhiling School of Mechanical and Electrical Engineering, North University of China, Taiyuan 030051, China 
BAN Wei Yichang Testing Technology Research Institute, Hubei Yichang 443003, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 针对引信自然贮存试验数据统计方法计算量大且试验时间开展较长的问题,提出BP和遗传算法相结合的方法(遗传BP算法),通过步加试验解决寿命预测问题。方法 通过步加试验数据求其试验各级应力下的环境因子,由环境因子将各级应力试验时间折合成实际贮存时间,根据Arrhenius 模型求出可靠度函数。其次,采用遗传算法优化BP神经网络,避免陷入BP局部最优问题,将步加试验数据代入遗传BP算法进行训练,提高预测的精度和准确度。将正常应力下的数据代入遗传BP算法进行测试,求出可靠度预测值。最终对比实际、Arrhenius模型、遗传BP算法的贮存可靠度预测值。结果 实际、Arrhenius模型、遗传BP算法的贮存可靠度预测值相近,证明遗传BP算法可以满足引信贮存可靠度的预测。结论 采用遗传BP算法对步加试验进行寿命预测,可以有效减少试验时长和降低试验成本。
英文摘要:
      In order to solve the problem of large amount of calculation and long test time in the statistical method of fuze natural storage test data, the work aims to propose a method combining BP and genetic algorithm (genetic BP algorithm), so as to solve the life prediction problem through step test. Firstly, the environmental factors under various levels of stress were calculated through step test data. The environmental factors were used to convert the stress test time at each level into the actual storage time, and the reliability function was calculated based on the model. Secondly, genetic algorithm was used to optimize the BP neural network to avoid the local optimal problem of BP. The step test data were substituted into the genetic BP algorithm for training, to improve the accuracy and precision of prediction. The data under normal stress were substituted into the genetic BP algorithm for testing, and the predicted reliability value was calculated. Finally, the actual storage reliability value and the predicted storage reliability values of model, and genetic BP algorithm were compared, which were similar, proving that the genetic BP algorithm could meet the prediction of fuze storage reliability. The genetic BP algorithm for predicting the lifespan of step test can effectively reduce the test duration and lower the test cost.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第12871334位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号