邢怀程,徐强仁,王立志,李广超,赵巍,赵庆军.跨音速风扇转子冰撞击损伤规律及抗冰撞击改进设计研究[J].装备环境工程,2024,21(8):96-110. XING Huaicheng,XU Qiangren,WANG Lizhi,LI Guangchao,ZHAO Wei,ZHAO Qingjun.Law of Ice Impact Damage of Rotor in Transonic Fan and Improvement Design of Anti-ice Impact[J].Equipment Environmental Engineering,2024,21(8):96-110.
跨音速风扇转子冰撞击损伤规律及抗冰撞击改进设计研究
Law of Ice Impact Damage of Rotor in Transonic Fan and Improvement Design of Anti-ice Impact
投稿时间:2024-03-14  修订日期:2024-05-16
DOI:10.7643/issn.1672-9242.2024.08.012
中文关键词:  航空发动机  跨音速  风扇叶片  脱落冰  损伤规律  改进设计中图分类号:V232.4 文献标志码:A 文章编号:1672-9242(2024)08-0096-15
英文关键词:aeroengine  transonic  fan blade  falling ice  damage law  improvement design
基金项目:国家科技重大专项(J2019-Ⅲ-0010-0054,J2019-Ⅱ-0016-0037)
作者单位
邢怀程 沈阳航空航天大学 航空发动机学院,沈阳 110136;中国科学院 工程热物理研究所,北京 100190 
徐强仁 中国科学院 工程热物理研究所,北京 100190;中国科学院 工程热物理研究所 轻型涡轮动力全国重点实验室,北京 100190 
王立志 中国科学院 工程热物理研究所,北京 100190;中国科学院 工程热物理研究所 轻型涡轮动力全国重点实验室,北京 100190 
李广超 沈阳航空航天大学 航空发动机学院,沈阳 110136 
赵巍 中国科学院 工程热物理研究所,北京 100190;中国科学院 工程热物理研究所 轻型涡轮动力全国重点实验室,北京 100190;中国科学院大学 航空宇航学院,北京 100190 
赵庆军 中国科学院 工程热物理研究所,北京 100190;中国科学院 工程热物理研究所 轻型涡轮动力全国重点实验室,北京 100190;中国科学院大学 航空宇航学院,北京 100190;中国科学院 分布式冷热电联供系统北京市重点实验室,北京 100190 
AuthorInstitution
XING Huaicheng School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, China;Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China 
XU Qiangren Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China 
WANG Lizhi Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China 
LI Guangchao School of Aero-engine, Shenyang Aerospace University, Shenyang 110136, China 
ZHAO Wei Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing, 100190, China 
ZHAO Qingjun Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;National Key Laboratory of Science and Technology on Advanced Light-duty Gas-turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing, 100190, China;Beijing Key Laboratory of Distributed Combined Cooling Heating and Power System, Chinese Academy of Sciences, Beijing 100190, China 
摘要点击次数:
全文下载次数:
中文摘要:
      目的 揭示脱落冰形状、运动轨迹和姿态对航空发动机风扇转子叶片的撞击损伤规律,增强叶片的抗冰撞击能力。方法 采用LS-DYNA进行数值模拟,开展脱落冰与叶片的撞击过程和叶型改进设计研究。结果 叶片的撞击损伤程度受脱落冰结构强度的影响,在同样的撞击条件下,叶片受球体冰撞击损伤最严重,而受片体冰撞击损伤最轻。叶片的损伤程度由叶片和脱落冰之间的相对速度和叶片切割冰块的质量共同决定,叶片切割脱落冰的质量越大,塑性变形越严重。当脱落冰入射角为45°时,叶片损伤最严重,对叶片的最大撞击力为17 828 N,最大内能达到126 J;当冰片从原始姿态绕y轴旋转90°时,对叶片前缘的撞击载荷最大,叶片塑性变形最严重。改进后,叶片受沿45°入射角脱落冰撞击后最大内能减小16%,失速裕度提高16.2%,峰值效率提高0.33%。结论 跨音速风扇转子撞击损伤位置在前缘附近,增大叶片进口几何角和局部厚度能显著提高叶片抗冰撞击能力。
英文摘要:
      The work aims to reveal the impact damage law of aeroengine fan rotor blades caused by the shape, trajectory and attitude of falling ice and enhance the ability of blades to resist ice impact. LS-DYNA was used to conduct numerical simulation to investigate the impact process between falling ice and blades, and the improvement design of blades. The extent of impact damage to the blades was affected by the structural strength of falling ice. Under the same impact conditions, the spherical ice caused the most damage to the blades whereas the flake sustains the least amount of impact damage. The damage degree of blades was determined by both the relative velocity between the blades and the falling ice and the mass of the ice cut by blades. The plastic deformation degree of blades increased with the mass of falling ice cut by blades. The blades suffered the most severe damage when the incidence angle of falling ice was 45°, with the maximum impact force of 17 828 N and the maximum internal energy of 126 J. The leading edge of blade experienced the greatest impact load and the most serious plastic deformation when the ice flake rotated 90° around the y-axis from its initial attitude. After the improvement, when the blades were impacted by the falling ice at the incident angle of 45°, the maximum internal energy of the blades decreased by 16%, the stall margin increased by 16.2%, and the peak efficiency increased by 0.33%. The impact damage position of transonic fan rotor is near the leading edge and increasing the inlet geometric angle and local thickness of the blades can significantly enhance the ability to resist ice impact.
查看全文  查看/发表评论  下载PDF阅读器
关闭

关于我们 | 联系我们 | 投诉建议 | 隐私保护 | 用户协议

您是第13084484位访问者    渝ICP备15012534号-5

版权所有:《装备环境工程》编辑部 2014 All Rights Reserved

邮编:400039     电话:023-68792835    Email: zbhjgc@163.com

视频号 公众号