# 精密离心机转盘/转臂结构变形规律研究

## 成永博, 卢永刚, 张映梅

(中国工程物理研究院 总体工程研究所,四川 绵阳 621900)

**摘要:目的**研究不同转盘/转臂结构在离心载荷和温度载荷作用下的变形。方法 在充分调研国 内外相关研究的基础上,分析几种转盘/转臂给定工程结构在离心载荷和温度载荷作用下的变形 规律。结果 通过分析可以得到,不同转盘/转臂结构随离心载荷的增大变形增大,随温度的正向 变化变形量增大,随温度的负向变化变形量负向减小。结论 同等载荷作用下的变形量主要由该 种结构形式转盘/转臂材料分布决定。对比几种转盘/转臂结构可以看出,锥形辐射式加强筋转盘 综合承载能力较优,可为工程选用。

关键词:离心机转盘/转臂工程结构;离心载荷;温度载荷

**DOI:**10.7643/issn.1672-9242.2015.05.015

中图分类号: TJ05; V416 文献标识码: A

文章编号:1672-9242(2015)05-0088-07

#### Variation of Precise Centrifuge Plate/Arm

CHENG Yong-bo, LU Yong-gang, ZHANG Ying-mei (Institute of System Engineering, CAEP, Mianyang 621900, China)

**ABSTRACT: Objective** To study the variation of different plate/arm structures under centrifugal and temperature loads. **Methods** Based on the study of domestic and overseas literatures, this paper analyzed several kinds of variation patterns of plate/arm structure under the centrifugal load and the temperature load. **Results** The results showed the variation of different plate/arm structures were enlarged when the centrifugal load increased and the variation was increased along with the positive temperature changing and decreased along with the negative temperature changing. **Conclusion** Under the same loading, the variation of the plate/arm depends on material distribution. The comparison of several kinds of the structure of the plate/arm shows the comprehensive carrying capacity of the conical ribbed plate is better, and this structure could be used for engineering.

KEY WORDS: centrifuge plate/arm structure; centrifugal load; temperature load

精密离心机是校准、检测线加速度计、惯性开关 等惯性仪表的主要设备,其加速度精度对被标定仪

收稿日期: 2015-08-13; 修订日期: 2015-08-23

**Received:** 2015–08–13; **Revised:** 2015–08–23

基金项目:国家重大科学仪器开发专项(2011YQ130047);中物院总体研究所创新与发展基金(12CXJ24)

Fund: Supported by National Fundamental Equipment Development Special Project (2011YQ130047) and Innovation and Development Fund of Institute of System Engineering (12CXJ24)

作者简介: 成永博(1985—),男,陕西彬县人,硕士,主要研究方向为非标结构设计。

Biography: CHENG Yong-bo(1985-), Male, from Binxian, Shaanxi, Master, Research focus: non-standard structure design.

表精度有着直接影响。研究发现,离心机转盘/转臂 半径变化对其加速度有主要影响,而运行中的离心 机转盘/转臂半径变化主要取决于离心载荷及温度 载荷。

成永博<sup>11</sup>在其学位论文中提出了影响离心机动态 半径的几种因素,并指出离心载荷和温度变化引起的 动态半径占总动态半径的99%。IEEE规范<sup>12</sup>提出了规 则截面形状大臂受离心载荷和温度变化时尺寸变化 量的理论式,动态半径的测量以光学测量和接近式测 量为主。李向<sup>13</sup>为航天部研制的离心机动态半径光学 测量系统和美国G460S型精密离心机<sup>14</sup>的光学测量系 统代表了光学测量的最高精度。杨巨宝<sup>15</sup>和刘健<sup>6-71</sup>研 制的微位移传感器测量法代表了其所能达到的最高 精度。夏丹<sup>18–91</sup>研究了离心机转盘的结构优化问题,却 并未揭示转盘结构对其变形的影响。文中基于工程 中可能的转盘/转臂结构,研究各结构在离心载荷和温 度载荷作用下的变形规律,以期为精密离心机转盘结 构设计提供参考。

#### 1 精密离心机转盘/转臂基本结构

精密离心机主要分为盘式和臂式两种结构。工 程上常见的转盘结构有:锥形辐转盘、条形筋转盘、实 心转盘、过渡盘式等4种;常见的转臂结构有:实心转 臂和镂空转臂等2种。图1和图2分别给出了几种工 程上的转盘和转臂(各转盘/转臂尺寸是在质量相等 的条件下设计得到)。



图1 转盘结构 Fig.1 Swing structure

# 2 离心载荷对转盘/转臂变形的影响

## 2.1 离心载荷对实心转盘的影响

实心加强转盘结构如图 la 所示,转盘中心部分是 锥形实心结构,然后沿径向至直径 φ 2000 mm 处厚度 逐渐递减。实心转盘在离心载荷作用下的变形云图 和位移曲线分别如图3和图4所示。载荷确定时负载 安装方位的变形最大。综合其变形曲线,可以看出, 随着离心载荷增大,转盘位移绝对值呈线性增大,使 得三维位移曲线呈现鱼嘴型。

另外,从变形曲线上可以看出,转盘沿负轴向发 生弯曲。这是因为一方面重力作用使转盘变形趋势 向下;另一方面,由于该结构的特点是材料多分布于 下表面,使得下表面刚度大,受离心载荷作用时,下表



a 实心转臂结构



b 镂空转臂结构

图2 转臂结构 Fig.2 Turn arm structure



图 3 实心转盘负载 100g 时变形 Fig.3 Position contour of the solid plate under 100g





面变形量较小,这样就出现了向下弯曲的特点。

#### 2.2 离心载荷对条形筋转盘的影响

条形筋转盘(图1b)的特点是转盘下表面在周向 均布有四主、四副加强筋。在离心载荷作用下,条形 筋转盘的变形情况如图5和图6所示。



图 5 条形筋转盘负载 100g 时变形 Fig.5 Position contour of the ribbed plate under 100g





条形筋等厚转盘变形最大点出现在负载安装方 位。给定载荷下其边缘变形曲线波动明显,呈倒喇叭 型;其轴向变形量随着载荷增大而增大;三维变形曲 线具有四主波峰、四副波峰,分别对应于主、副加强筋 位置。

#### 2.3 离心载荷对锥形转盘的影响

锥形转盘的特点是在实心转盘结构基础上去除 部分材料,于转盘下表面中心处形成加强筋,其结构 如图1c所示。

离心载荷对该结构转盘的影响结果如图7和图8 所示。其变形规律与前两种结构类似,最大变形量出 现在负载安装方位,全载荷范围内变形曲线簇呈现出 鱼嘴型,只有1个波峰。



图7 锥形转盘负载100g时变形 Fig.7 Position contour of the conical ribbed plate under 100g



图 8 锥形转盘离心载荷作用下边缘三维变形曲线 Fig.8 3D position curves of the conical ribbed plate under centrifugal load

## 2.4 离心载荷对过渡式转盘的影响

过渡式转盘结构如图1d所示,是盘式与臂式的过 渡结构,在负载安装位置设置了等截面筋。过渡式转 盘在离心载荷作用下的变形情况如图9和图10所 示。由图10中曲线可知,载荷确定时,过渡式转盘轴 向负向最大变形出现在负载安装方位,轴向最小变形 出现在负载正交位置。



图 9 过渡式转盘负载 100g 时变形 Fig.9 Position contour of the transitional plate under 100g





#### 2.5 实心转臂离心载荷作用变形规律

实心转臂结构如图 2a 所示,其厚度为240 mm,工 作时负载安装于转臂两端工作台上。实心转臂在离 心载荷作用下变形规律如图 11 和图 12 所示。由位移 曲线可以看出,等质量设计使得厚度增加时,臂端的 轴向变形量明显下降,且其最大最小位移差也减小 为0.4 μm,即波动较小,轴向稳定性变好。



图 11 实心转臂负载 100g 时变形 Fig.11 Position contour of the solid arm under 100g



图 12 实心转臂载荷作用下边缘三维变形曲线 Fig.12 3D position curves of the solid arm under loading

#### 2.6 离心载荷对镂空转臂的影响

镂空转臂结构如图2b所示,将实心转臂径向中心 部位去除部分材料得到,厚270mm。镂空转臂受到离 心载荷时变形图如图13和图14所示。图14中曲线变 化趋势与实心转臂变形曲线(图4)变化规律一致,变 形量最大均是在负载安装部位,而对应载荷下位移幅 值均增大。







图 14 镂空转臂载荷作用下边缘三维变形曲线 Fig.14 3D position curves of the chiseled arm under loading

## 2.7 离心载荷对转盘/转臂影响的小结

2.1节到2.6节主要分析了受离心载荷作用时,工 程上各转盘/转臂结构的变形规律。各曲线反应出,同 一结构受到确定载荷作用时,负载安装部位就是其最 大变形位置,且转盘变形量随着离心载荷呈线性变化 特点。

不同结构受离心载荷作用时的变形曲线,反应了 该种结构的波动特性。从趋势上看,条形筋转盘盘面 波动最大(动态下该结构盘面呈现出八峰八谷);过渡 式转盘出现两个较大波峰和两个波谷;实心转盘和锥 形辐射式转盘变形曲线较为平滑,有两对峰谷。转臂 结构变形不连续。

综合考虑各结构转盘/转臂综合变形及转盘的动态稳定性,可以确定,锥形转盘由于其综合性能稳定, 径向变形以及轴向波动较小为优选转盘方案。

## 3 温度变化对转盘/转臂的影响

温度变化可引起材料的缩涨特性,进而对精密离 心机结构尺寸产生影响,使其半径发生变化。下面根 据离心机工作环境温度控制要求,分析温度变化范围 为(20±0.5)℃时的转盘/转臂的变形情况。

## 3.1 温度变化对实心转盘的影响

随温度变化时,实心转盘上表面边缘处变形曲线 如图 15 所示。温度基准为20 ℃,随着温度变化,转盘 外边缘线性变形。变形曲线簇为圆锥形,锥顶就是应 于基准温度对应构型,温度降低时位移曲线沿轴向负 向绝对值增大,升高时则相反。其原因是温度影响下 的变形机理与离心载荷作用下的变形机理相同,即表 面刚度不等。当温度降低时,转盘收缩尺寸减小,由 于上、下表面刚度不同使盘面向上弯曲;当温度升高 时转盘变形方向相反。





Fig.15 Position curves of the solid plate with temperature changing

#### 3.2 温度变化对条形筋转盘的影响

条形筋转盘随温度变化时的边缘变形曲线如图 16所示,其变形规律类似于实心转盘,盘面在温度降 低时上翘,升高时下弯。另外,图16中曲线的波动性 还反应出该种结构材料分布的特点。这与受离心载 荷作用的结果类似。

#### 3.3 温度变化对锥形转盘随的影响

温度对锥形转盘变形的影响曲线如图17所示,变





Fig.16 Position curves of the ribbed plate with temperature changing

化规律类似于实心转盘。温度变化量确定时,其变形 量要略大些。



图 17 锥形转盘随温度变化变形曲线

Fig.17 Position curves of the conical ribbed plate with temperature changing

## 3.4 温度变化对过渡式转盘的影响

过渡式转盘随温度变化的变形曲线如图 18 所示。环境温度增大时,位移曲线向下弯曲,类似马鞍形;温度减小时,反向变形曲线簇为倒马鞍形。



图18 过渡式转盘随温度变化变形曲线



## 3.5 温度变化对实心转臂的影响

实心转臂随温度变化时的变形曲线如图 19 所 示。曲线表明,当温度低于标准温度时,转臂收缩,变 形呈现负向减小特点;温度高于基准值时,变形呈现 正向增大。另外,等质量设计的转臂较厚,臂端刚度 大于转盘结构,其变形量较小。





#### 3.6 温度变化对镂空转臂的影响

温度变化对镂空转臂的影响曲线如图 20 所示。 该曲线与实心转臂变形曲线(图 19)变化趋势相同,温 度升高时,尺寸增大;温度降低时,尺寸减小。由于镂 空结构其厚度大于实心转臂,其轴向变形量也大于实 心转臂结构。





Fig.20 Position curves of the chiseled arm with temperature changing

#### 3.7 温度变化对转盘/转臂影响的小结

分析了温度变化对转盘 / 转臂结构的影响。根据分析结果,当离心机温度偏离基准值时,转盘尺寸 发生变化。温度升高使转盘尺寸增大,温度降低使转 盘尺寸减小。同等温度变化时,各转盘 / 转臂变形形 式及变形量取决于其结构对材料分布的影响。

综上所述,温度变化对不同转盘/转臂结构的影响曲线,反应了该结构所处环境温度变化时盘面的变形量及平稳性变化差异。根据各结构的温度变形曲线,可以确定锥形辐射式加强筋转盘结构在整体温度性能方面较优。

## 4 结语

文中研究了几种转盘/转臂工程结构在离心载荷 和温度载荷作用下的变形规律。通过分析发现,所有 结构变形量随离心载荷变化与温度变化时呈线性关 系。另外,同等载荷作用下变形量的差异取决于其结 构形式导致的转盘/转臂材料分布状态。对比各结构 在离心载荷和温度载荷作用下的变形规律可以看出, 锥形辐射式加强筋转盘的综合承载能力较其他结构 优,可为工程选用。

#### 参考文献:

- 成永博. 基于多学科统一建模的精密离心机动态半径误差 分离仿真研究[D]. 绵阳:中国工程物理研究院,2013.
   CHENG Yong-bo. Simulation Research on Dynamic Radius Error Separation Techniques of Precision Centrifuge Based on the General Multi-discipline Modeling[D]. Mianyang: CAEP, 2013.
- [2] IEEE Std 836TM—2009, IEEE Recommended Practice for Precision Centrifuge Testing of linear Accelerometers [S].
- [3] 李向. 大型精密离心机相对臂长及失准角测量系统研究
   [D]. 北京:清华大学,1995
   LI Xiang. The Study on the Measurement System of Relative

(上接第77页)

(1):116-119.

[7] 黎启胜,张映梅,卢永刚,等.精密离心机结构安装误差对 主轴回转精度的影响[J].机械设计与制造,2012(2):5860.
LI Qi-sheng, ZHANG Ying-mei, LU Yong-gang, et al. Effect of Assembly Error of Precision Centrifuge Structure on Rotary Precision of Main Spindle[J]. Machinery Design & Manufacture,2012(2):5860.

[8] 杨亚非. 精密离心机上加速度计安装姿态误差和主轴姿态 误差对测试的影响[J]. 宇航计测技术,2002,22(4):30—34. YANG Ya-fei. The Influence of Accelero-meters Fixing Attitude Errors and Main-axis Attitude Errors on Acceler-ometers Test on the Precision Centrifuge[J]. Journal of Astronautic Metrology and Measurement, 2002, 22(4):30—34.

[9] 杨亚非.动不平衡对离心机精度的影响[J].测试技术学报,

Arm length and Angular deflection of Giant Precision Centrifuge[D]. Beijing: Tsinghua University, 1995.

- [4] Genisco Technology Corporation. Instruction of Manual Model G-460S Precision Centrifuge[K]: 1—37
- [5] 杨巨宝. 精密离心机半径值动态测试系统[J]. 宇航计测技 术,1994,13(2):5—10.

YANG Ju-bao. Dynamic Measurement System for the Radius of Precision Centrifuger[J]. Journal of Astronautic Metrology and Measurement, 1994, 13(2):5-10.

[6] 刘健. 线加速度模拟转台——离心机动态半径测试的研究 [D]. 天津:天津大学,2007.

LIU Jian. Study on Test Method of Dynamic Radius of Linear Acceleration Analogue Revolving Table–Precision Centrifuge [D]. Tianjin: Tianjin University, 2007.

- [7] 刘健,王宝光,刘宇,等.转台离心机动态半径测试方法的研究[J]. 宇航计测技术,2006,26(6):1—4.
  LIU Jian, WANG Bao-guang, LIU Yu, et al. Revolving Table Centrifugal Machine Dynamic Radius Measuring Method[J].
  Journal of Astronautic Metrology and Measurement, 2006, 26 (6):1—4.
- [8] 夏丹. 大过载精密离心机负载盘的优化设计[D]. 哈尔滨: 哈尔滨工业大学,2006.

XIA Dan. The Optimum Design of the Load Pan of Precision Centrifuge under Overload Condition[D]. Harbin: Harbin Institute of Technology, 2006.

[9] 夏丹,刘军考,陈维山,等. 基于灵敏度分析的精密离心机 负载盘优化设计[J]. 机械设计,2006,23(11):7—10.
XIA Dan, LIU Jun-kao, CHEN Wei-shan, et al. Optimization Design of Loading Disc of Precision Centrifuge Based on Sensitivity Analysis[J]. Journal of Machine Design, 2006, 23 (11):7—10.

2008,22(2):95-98.

YANG Ya-fei. Influence of Dynamic Unbalance on Centrifuge Accuracy[J]. Journal of Test and Measurement Technology, 2008,22(2):95—98.

[10] 李树森. 精密离心机静压气体轴承主轴系统动力学稳定性研究[D]. 哈尔滨:哈尔滨工业大学,2002.
 LI Shu-sen. Research on the Stability of Pressurized Bearing

of the Precision Centrifuge Centrifuge[D]. Harbin: Harbin Institute of Technology, 2002.

[11] 郭茂政.论惯性积的平移变换和旋转变换[J].大学物理, 2004,23(6):23-31.

GUO Mao-zheng. A Discussion on the Shifting Transformation and Rotating Transformation of Inertial Prouduct[J]. College Physics, 2004, 23(6):23-31.