压力酸浸制备双价聚硅硫酸铝铁及其除藻性能

梁毓嘉。,恩达。,吕莹。,韩博蕾。,谢慧芳。,曲虹霞。,陈守文。

(南京理工大学 a. 环境与生物工程学院 江苏省化工污染控制与资源化重点实验室;

b. 化工学院, 南京 210094)

摘要:目的 利用钾长石提钾后的固体渣,开发双价多功能絮凝剂,研究其除藻性能,实现钾长石的综合利用,为除藻等水处理提供新型药剂。方法 利用压力酸浸(PAL)工艺提取固体渣中的铝、铁,通过引入 Fe(II) 源,制备得到含 Fe(II)的双价聚硅硫酸铝铁(PSAFS),以铜绿微囊藻(*Microcystis aeruginosa*)为模式藻,研究 PSAFS 的混凝除藻效果及其与 H₂O₂ 的耦合效应。结果 当硫酸浓度为 2.8 mol/kg,固液比为 1:3 时,在 105 ℃下反应 2 h, PAL 可提取近 100%的铝和 85.6%的铁。含 Fe(II)的双价聚硅硫酸铝铁新型絮凝剂对于 *Microcystis aeruginosa* 具有优异的去除效果,引入 Fe(II)可以拓宽絮凝剂应用的 pH 范围。同时,在 H₂O₂存在时,产品明显增加了藻细胞的失活。结论 以钾长石提钾后的固体渣为原料,采用 PAL 工艺,可绿色经济地制备含 Fe(II)的双价 PSAFS,是一种具有应用前景的多功能絮凝剂。 关键词:钾长石固体渣;铜绿微囊藻;压力酸浸;耦合絮凝

DOI: 10.7643/ issn.1672-9242.2020.07.008

中图分类号: TU991.2 文献标识码: A

文章编号: 1672-9242(2020)07-0038-07

Preparation of Dual-valent Polysilicate Aluminum Ferric Sulfate by Pressure Acid Leaching and Its Removal of Cyanobacteria

LIANG Yu-jia^a, ASGODOM Engda Michael^a, LYU Ying^a, HAN Bo-lei^a, XIE Hui-fang^a, QU Hong-xia^b, CHEN Shou-wen^a

(a. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, b. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

ABSTRACT: The paper aims to develop a multifunctional dual-valent flocculant from the solid residues of K-feldspar, study its characteristics in removal of *microcystis aeruginosa*, to achieve comprehensive utilization of K-feldspar and provide a new flocculant for water treatment. The pressure acid leaching (PAL) process was used to extract aluminum and iron from solid residues and the dual-valent PSAFS was prepared by introducing Fe (II). *Microcystis aeruginosa*, the model of cyanobacteria, was used to determine the algal removal characteristics and coupling effects with H₂O₂. Nearly 100% aluminum and 85.6% iron were extracted at H₂SO₄ concentration 2.8 mol/kg, solid-liquid ratio 1:3, temperature 105 °C and PAL time 2 h. The dual-valent PSAFS showed excellent ability to remove *microcystis aeruginosa* and the introduction of Fe (II) can broaden the pH range of flocculant application. This new coagulant could deactivate more *microcystis* cell when H₂O₂ was present. The dual-valent

收稿日期: 2020-01-23; 修订日期: 2020-02-26

Received: 2020-01-23; Revised: 2020-02-26

作者简介:梁毓嘉(1997—),女,主要研究方向为环境工程。

Biography: LIANG Yu-jia (1997-), Female, Research focus: environmental engineering.

通讯作者:谢慧芳(1972-),女,博士,副教授,主要研究方向为水处理。

Corresponding author: XIE Hui-fang (1972-), Female, Doctor, Associate professor, Research focus: water treatment.

PSAFS can be prepared from solid residues of K-feldspar after potassium extractions by PAL process in a green and economical way. It is a promising multifunctional flocculant.

KEY WORDS: solid residue of K-feldspar; microcystis aeruginosa; pressure acid leaching; coupling coagulation

蓝藻水华是目前中国淡水水体所面临的严峻问 题之一, 絮凝工艺在富藻水处理中占据着重要的地 位,而经济高效的絮凝剂是该工艺的技术支撑^[1]。聚 硅硫酸铝铁(Polysilicate aluminum ferric sulfate, PSAFS)作为一类性能优良的新型无机絮凝剂^[2-3], 成为研发重点,同时为提高处理效果,出现了预氧化-絮凝工艺^[4]。采用过硫酸盐/Fe(II)等预氧化手段,可 通过破坏藻胞外有机物,提高混凝效果,减少药剂用 量^[5-9]。预氧化处理需要仔细控制氧化程度,以减少 包括藻毒素在内的微藻胞内有机物的释放,减少环境 风险^[7]。原位高级氧化可有效破坏藻细胞结构而使其 失活[10-12],同步氧化/絮凝会使更多的藻细胞失活, 更少溶解性有机物释放^[6], Fenton 氧化工艺可有效降 解藻毒素也已得到证实[13-14]。这些结果表明,可以将 絮凝和 Fenton 氧化工艺相互耦合, 而这就需要新型 多功能絮凝剂。

钾长石矿储量大,分布广,国内针对其主要成分 钾长石(KAlSi₃O₈)、白云母(K₂O·3Al₂O₃·6SiO₂·2H₂O) 开展了提钾研究。提钾之后会产生相当量的固体渣, 其中仍含有铝、铁等成分,但铝含量达不到提铝工艺 要求,且除铁等杂质工艺繁琐复杂^[15-17],因此应研发 进一步资源化应用途径。

综合原料特性及行业需求,本研究以钾长石提钾后固体渣为原料,采用压力酸浸(Pressure acid leaching, PAL)工艺提取其中的铝铁活性组分,制备含有 Fe(II)组分的双价絮凝剂,为进一步实现絮凝和 Fenton 氧化的耦合提供新型复合絮凝剂。

1 实验

1.1 材料

钾长石提钾后固体渣的 XRF 分析结果: Al₂O₃ 18.7%, Fe₂O₃8.23%, Na₂O 21.4%、K₂O 4.6%、MgO 1.6%、SiO₂ 35.1%等。

铜 绿 微 囊 藻 (*Microcystis aeruginosa*, 编 号 FACHB 905)购自中科院水生生物研究所,采用 BG11 培养基扩培^[18]。

1.2 压力酸浸实验

压力酸浸(PAL)在带有聚四氟乙烯内衬的 100 mL密封反应釜中进行。将10g固体渣,按固液 比1:8和1:3加入不同浓度硫酸溶液,混合均匀后, 将反应釜密封,并置于105℃烘箱中。反应结束后, 抽滤并用定量水洗涤残渣,收集滤液,测定铝、铁含 量, 计算浸出率。

1.3 PSAFS 的制备

配制 0.5 mol/L Na₂SiO₃·9H₂O 溶液,调节 pH 后 置于 15 ℃恒温水浴中,观察记录现象,优化聚硅酸 制备条件。

称取已知铝、铁含量的 PAL 浸出液为 Al 源和 Fe(III)源,按 $n_{AI}:n_{Fe}$ (摩尔比)=1:1添加 FeSO₄·7H₂O 作为 Fe(II)源,充分搅拌使其溶解。分别按设定 $n_{(AI+Fe)}:n_{Si}$ (摩尔比)加入 Na₂SiO₃·9H₂O,控制 pH 为 聚硅酸最优条件。将混合液于 50℃恒温水浴中反应 5 h,室温下静置 1 h,制备得到含有 Fe(II)的残渣基 PSAFS,记为"产品"。

以试剂硫酸铁为 Fe(III)铁源, 以硫酸铝为 Al 源, 按 n_(Al+Fe):n_{Si}=10, 在相同条件下制备无 Fe(II)的 PSAFS-A。以占总铁 1/2 的硫酸亚铁为 Fe(II)源, 在 相同条件下制备含 Fe(II)的 PSAFS-B。

1.4 分析及表征方法

在 680 nm 处测定水样的吸光度 A₆₈₀^[7],以评价藻 密度。采用 GB/T 22617—2014 方法测定产品中氧化 铝、总铁的含量。利用铜 Kα 辐射的 Bruker D8 型射 线衍射仪获得 XRD 图谱,傅立叶红外(FTIR)图采 用 KBr 压片法,利用 Perkin-Elmer 红外光谱仪进行 测定。

1.5 絮凝实验

絮凝实验采用模拟富藻原水,改变絮凝剂投加量、原水初始 pH 值,待絮凝沉淀后,取上清液,测 A₆₈₀。计算微藻去除率,评价絮凝剂性能。

2 结果与讨论

2.1 聚硅酸制备

聚硅酸制备是该系列絮凝剂制备过程中较为关键的一步,因此,首先研究了硅酸的聚合条件。对于 0.5 mol/L Na₂SiO₃·9H₂O,pH在 5~10 时,很快发生凝 胶。当 pH<5.0 或>10.5 时,凝胶时间明显增长,这和 相关结果类似^[19-20]。考虑到实验金属离子存在于酸浸 液中,因此选择酸性为聚合硅酸条件。此时,凝胶时间与 pH 的关系如图 1 所示。因此,控制制备过程中 pH 为 3.0~3.5,此时胶凝时间在 20 h 以上,可以满足 后续制备过程需要。

图 1 硅酸胶凝时间与 pH 值的关系 Fig.1 Relationship between jelling time and pH value of silicate acid

2.2 固体渣中铝铁浸出率研究

固体渣的压力酸浸(PAL)选择在 105 ℃条件下 完成,后续铝铁的测定是在冷却后进行的,结果如图 2 所示。可见,铝经过提钾工段活化处理后较易溶出, 且随着酸浓度的增加,先增加、后降低。

当固液比为 1:8 (见图 2a), H₂SO₄ 为 0.05~0.25 mol/kg 时, Al₂O₃ 的浸出率达到约 80%, 继续增

加酸浓度,浸出率下降至 70%左右,铁的浸出率较低。 当 H_2SO_4 浓度 \geq 0.25 mol/kg 时,保持在 40%左右。 根据 M. Baghalha 等的研究数据,在高温(250 °C) 二元 H_2SO_4 - $Al_2(SO_4)_3$ 溶液中, $Al_2(SO_4)_3$ 在低浓度硫 酸溶液(<1.0 mol/kg)中的溶解度随着酸浓度的增加 而增加。当存在 MgSO₄ 时,则因离子间的相互作用 而明显下降,同时也引起 H⁺活性的明显降低^[21]。本 实验中原料组分多样,含有铁、镁等金属元素,PAL 体系复杂,离子间的干扰难以避免,使得 $Al_2(SO_4)_3$ 的溶出受到影响。另外有研究数据表明^[22],低温(25~ 60 °C)的 $Al_2(SO_4)_3$ - H_2SO_4 - H_2O 体系中,随着体系中 硫酸浓度的增加(0~2.5 mol/kg),硫酸铝的溶解度 有所下降,这也可能是铝的浸出率在提高酸浓度情况 下有所下降的原因之一。

当固液比为 1:3(见图 2b),硫酸浓度为 2.8 mol/kg 时, Al₂O₃ 浸出率接近 100%,此时铁的浸出率为 85.6%。继续增加酸浓度,两者浸出率均有所下降。 综上所述,确定 PAL 工艺条件:固液比为 1:3,硫酸 浓度为 2.8 mol/kg,温度为 105 ℃,时间为 2 h。

2.3 产品的表征

在产品的 XRD 图(见图 3a)中, Na₂Fe(SO₄)₂·4H₂O 和 Al₂O₃·2SiO₂·3H₂O 的衍射峰较强且较尖锐,说明样 品中含有发育较好的硫酸亚铁盐等晶体,Fe(II)被成

功引入产品中,同时产品中还有一定强度的 NaAlSi₃O₈ 衍射峰。在产品的 FTIR 图(见图 3b)中,3160 cm⁻¹ 附近较宽的峰及 1661 cm⁻¹峰与结晶水及—OH 相关, 1145 cm⁻¹处的吸收峰是 Si—O—Fe 的弯曲振动所致, 1074 cm⁻¹处的吸收峰可能是由 MO(M—Fe、 Al等)的伸缩振动及 Si—O—Fe 不对称弯曲振动引起 的,603 cm⁻¹处与 Al—Si—O 和 Fe—Si—O 键的弯曲 振动有关^[1-3,23]。由于聚硅酸的加入,使产品中可能存 在 Si—O—Fe、Al—OH—Al、Al—Si—O 及 Fe—Si— O 等的成键,在絮凝过程中可以产生含硅单核或多核 羟基络合物、聚硅分子片等产物。同时,铝、铁可能 水解成带正电的胶体,从而起到电中和、吸附架桥及 网捕等综合作用,导致水中粒子迅速凝聚沉淀^[20,23]。

2.4 产品絮凝性能的影响因素研究

铁铝含量及其与硅含量的比值对于产品的絮凝 性能有重要影响^[2]。Sun 等^[3]的研究表明,当 $n_{Al}:n_{Fe}$ = 1:1 时, PSAFS 絮凝效果最好。以化学试剂为原料制 备的 PSAFS-A,在藻液初始 pH 7.0,投加量为 0.06% 时,微藻的去除率为 44.2%。在相同条件下,以 Fe(II) 取代其中 1/2 的 Fe(III)源制备的 PSAFS-B,对微藻的 去除率提高到 84.3%。因此,确定 $n_{Al}:n_{Fe}$ =1:1,并引 入 Fe(II)作为制备条件。

根据测定结果, PAL 浸出液中铁主要是 Fe(III) 形式存在。因此,实验根据 PAL 浸出液中铝铁含量, 补充部分 Fe(II),使 *n*_{Al}:*n*_{Fe}=1:1,制备不同 *n*_{(Al+Fe}):*n*_{Si} 的固体渣基产品,对富藻原液的处理效果如图 4 所 示。其中硅是以聚硅酸的形式存在,以初始硅酸盐用 量计算。

图 4 n_(Al+Fe):n_{Si}对絮凝除藻的影响(藻液初始 pH 7.0, 产品投加量为 0.12%) Fig.4 Effects of n_(Al+Fe):n_{Si} on microcystis removal (original pH 7.0, product dosage 0.12%)

可见,当原料中铝铁含量较低时,絮凝效果较差。 这可能是因为水解产生的带正电的胶体不足,使之与 带负电的微藻细胞、含硅络合物等电中和作用不足, 影响絮凝效果。当 n_(Al+Fe):n_{Si}大于 10 时,除藻效果均 可达到较好水平。这和试剂制备的 PASFS 用于处理 含油废水时结果类似^[2]。考虑到今后固体渣中硅源的 综合利用,选择 *n*_(Al+Fe):*n*_{Si}=10。

絮凝剂的适用 pH 值范围是产品性能的重要指标 之一。在试验 pH 5.0~11.0 范围内,产品对于富藻原 液均表现出良好的应用性能,在 15 min 内可达到近 100%的去除效果(如图 5 所示)。这可能得益于产 品中引入 Fe(II)源,这可以从图 6 所示的三种 PSAFS 絮凝效果的比较中得到证实。

图 5 藻液初始 pH 值对絮凝除藻的影响 (产品用量为 0.12%)

Fig.5 Effects of original pH on *microcystis* removal (product dosage 0.12%)

如图 6 所示,不含 Fe(II)的 PSAFS-A 在 pH 为 5~9 时表现出良好的絮凝效果。当 pH 为 11 时,絮凝效果 显著下降。当引入 Fe(II)时, PSAFS-B 在 pH 5.0~11.0 范围内均表现出优良的絮凝效果。在较强碱性条件 下,铝和 Fe(III)的水解受到抑制,无法有效发挥作用, 而含 Fe(II)的絮凝剂中的 Fe(II)会氧化生成 Fe(III),而 新生态的 Fe(III)发挥了良好的絮凝效果。

产品不同用量时,对于富藻原液的处理效果如图 7 所示。当用量≤0.06%时,因药量不足而不能使微藻 有效去除。当用量≥0.12%时,微藻在混合后极短时间 内即可得到有效絮凝,并快速沉降,去除率接近100%。

图 7 产品投加量对絮凝除藻的影响(藻液初始 pH 7.0) Fig.7 Effects of product dosage on *microcystis* removal (original pH 7.0)

2.5 絮凝/H₂O₂耦合对微藻细胞形态的影响

在投加 3 种不同絮凝剂的同时添加 H₂O₂,经过 絮凝沉淀后,微藻细胞的显微图片见图 8。

从图 8a 可以看出, 原始藻液中微藻细胞分布均

a 原始藻液

c PSAF-B

匀,呈半透明绿色。投加絮凝剂和 0.6%H₂O₂后,微 藻细胞均聚集在各自形成的矾花中。对于不含 Fe(II) 的 PSAFS-A 而言(见图 8b),其矾花中微藻细胞形 态仍然完整,呈现出透明或半透明球形。这种形态的 微藻细胞,可以在较长时间内保持活性[24],若不进一 步处理,则有可能继续繁殖生长。对于含有 Fe(II)的 PSAFS-B(见图 8c),视野中出现了红棕色矾花,其 中聚集的微藻细胞明显变小,且更为密实。同时出现 一些裂解的细胞,还有多个藻细胞相互融合现象。这 是因为 Fe(II)在 H₂O₂作用下生成 Fe(III), 而新生成的 Fe(III)可有效降低细胞的 Zeta 电位, 使形成的絮体更 为紧实^[6,25]。在图 8d 中,产品/H₂O₂耦合作用后,出 现红棕色絮体,同时大量藻细胞破裂,但大部分仍存 在于矾花中。这可能是因为产品中 Fe(II)在转化为 Fe(III)的同时使 H₂O₂活化,发生类 Fenton 反应,使 藻细胞裂解失活。聚硅硫酸亚铁活化 H₂O₂已经被应 用到染料中间体的处理中^[26],目前课题组正在开展产 品与 H₂O₂ 耦合工艺中藻细胞裂解同时释放出的细胞 内有机物的降解情况研究,避免絮凝除藻带来的潜在 环境风险。

b PSAF-A

图 8 藻液及絮凝/H₂O₂耦合处理后矾花的显微照片(×400) Fig.8 Micrographs of *microcystis*-laden water and the flocs after coupling treatment by coagulation/H₂O₂: a) *microcystis*-laden water; b) PSAFS-A; c) PSAFS-B; d) product

3 结论

以钾长石提钾过程中产生的固体渣为原料,研究 了 PAL 法提取其中铝铁的工艺条件,并通过引入 Fe(II)源,制备了新型双价聚硅硫酸铝铁絮凝剂,避 免了固体渣利用中繁琐复杂的铝、铁分离工艺,实现 了其同步综合利用。同时,对水中铜绿微囊藻的絮凝 去除研究表明,这种新型产品具有优良的絮凝效果。 工艺中引入 Fe(II)源,拓展了絮凝剂的 pH 适用范围, 同时,在 H₂O₂ 等氧化剂存在情况下,可以原位生成 Fe(III),强化絮凝效果,并使微藻细胞裂解失去活性, 从而达到较为彻底的除藻灭活的效果。总之,采用

• 43 •

PAL 工艺从钾长石提钾固体渣中提取铝铁并实现其 同步利用,为固体渣的综合利用提供了新的思路。同 时,也为富含微藻原水的处理提供了基于新型絮凝/ 高级氧化耦合工艺的水处理剂。

参考文献:

 (1) 詹咏, 疏醒, 杨蓉, 等. 硫铁矿烧渣制备聚合氯化硫酸 铁铝及其表征[J]. 上海理工大学学报, 2017, 39(2): 182-187.

 ZHAN Yong, SHU Xing, YANG Rong, et al. Preparation

of Polymetic Aluminum Ferric Sulfate Chloride from Pyrite Cinders and Its Characterization[J]. J University of Shanghai for Science and Technology, 2017, 39(2): 182-187.

- [2] YOU Z, ZHANG L, ZHANG S, et al. Treatment of Oil-contaminated Water by Modified Polysilicate Aluminum Ferric Sulfate[J]. Processes, 2018, 6(7): 95.
- [3] SUN Y, ZHU C, ZHENG H, et al. Characterization and Coagulation Behavior of Polymeric Aluminum Ferric Silicate for High-concentration Oily Wastewater Treatment[J]. Chemical Engineering Research and Design, 2017, 119: 23-32.
- [4] XIE P, CHEN Y, MA J, et al. A Mini Review of Preoxidation to Improve Coagulation[J]. Chemosphere, 2016, 155: 550-563.
- [5] JIA P, ZHOU Y, ZHANG X, et al. Cyanobacterium Removal and Control of Algal Organic Matter (AOM) Release by UV/H₂O₂ Pre-oxidation Enhanced Fe(II) Coagulation[J]. Water Research, 2018, 131: 122-130.
- [6] LIU B, QU F, CHEN W, et al. *Microcystis Aerugi-nosa*-laden Water Treatment Using Enhanced Coagulation by Persulfate/Fe(II), Ozone and Permanganate: Comparison of the Simultaneous and Successive Oxidant Dosing Strategy[J]. Water Research, 2017, 125: 72-80.
- [7] QI J, LAN H, LIU R, et al. Fe(II)-regulated Moderate Pre-oxidation of *Microcystis Aeruginosa* and Formation of Size-controlled Algae Flocs for Efficient Flotation of Algae Cell and Organic Matter[J]. Water Research, 2018, 137: 57-63.
- [8] NACERADSKA J, PIVOKONSKY M, PIVOKONSKA L, et al. The Impact of Pre-oxidation with Potassium Permanganate on Cyanobacterial Organic Matter Removal by Coagulation[J]. Water Research, 2017, 114: 42-49.
- [9] LIN J L, HUA L C, WU Y, et al. Pretreatment of Algae-laden and Manganese-containing Waters by Oxidation-assisted Coagulation: Effects of Oxidation on Algal Cell Viability and Manganese Precipitation[J]. Water Research, 2016, 89: 261-269.
- [10] GU N, WU Y, GAO J, et al. *Microcystis Aeruginosa* Removal by in Situ Chemical Oxidation Using Persulfate Activated by Fe²⁺ Ions[J]. Ecological Engineering, 2017, 99: 290-297.

- [11] GAO L, PAN X, ZHANG D, et al. Extracellular Polymeric Substances Buffer Against the Biocidal Effect of H₂O₂ on the Bloom-forming Cyanobacterium *Microcystis Aeruginosa*[J]. Water Research, 2015, 69: 51-58.
- [12] MATTHIJS H C P, VISSER P M, REEZE B, et al. Selective Suppression of Harmful Cyanobacteria in an Entire Lake with Hydrogen Peroxide[J]. Water Research, 2012, 46(5): 1460-1472.
- [13] ZHONG Y, JIN X, QIAO R, et al. Destruction of Microcystin-RR by Fenton Oxidation[J]. Journal of Hazardous Materials, 2009, 167(1): 1114-1118.
- [14] BANDALA E R, MARTÍNEZ D, MARTÍNEZ E, et al. Degradation of Microcystin-LR Toxin by Fenton and Photo-Fenton Processes[J]. Toxicon, 2004, 43(7): 829-832.
- [15] 杨喜,崔慧霞,郭彦霞,等. 煤矸石中的铝、铁在高浓度盐酸中的浸出行为[J]. 环境工程学报, 2014, 8(8): 3403-3408.
 YANG Xi, CUI Hui-xia, GUO Yan-xia, et al. Leaching Behavior of Alumina and Ferric Oxide in Concentrated Hydrochloric Acid from Coal Gangue[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3403-3408.
- [16] 刘瑞平,张一雯,杨春明,等.高纯氧化铝提取技术研究及应用[J].世界有色金属,2018,(13):11-13. LIU Rui-ping, ZHANG Yi-wen, YANG Chun-ming, et al. Research and Application of High Purity Alumina Extraction Technology[J]. World Nonferrous Metal, 2018, (13): 11-13.
- [17] 郭昭华. 粉煤灰"一步酸溶法"提取氧化铝工艺技术及 工业化发展研究[J]. 煤炭工程, 2015, 47(7): 5-8. GUO Zhao-hua. Study and Industrialization Development of One-step Acid Dissolution Technology for Alumina Extraction from Fly Ash[J]. Coal Engineering, 2015, 47(7): 5-8.
- [18] 张韫,谢慧芳. 白腐菌 S.commune 降解微囊藻毒素-LR 的研究[J]. 环境污染与防治, 2012(10): 56-60. ZHANG Yun, XIE Hui-fang. Study on the Biodegradation of Microcystin-LR by White-rot Fungus S.commune[J]. Environmental Pollution and Control, 2012(10): 56-60.
- [19] 付垚.聚合硅酸的聚合机理和制备方法[J]. 辽宁化工, 2017, 46(11): 1076-1077.
 FU Yao. Polymerization Mechanism and Preparation Methods of Polysilicic Acid[J]. Liaoning Chemical Industry, 2017, 46(11): 1076-1077.
- [20] 魏宏亮,孙彤,穆柏春.油页岩灰渣制备聚合硅酸铝铁 絮凝剂的研究[J]. 辽宁工业大学学报(自然科学版), 2010, 30(01): 37-40.
 WEI Hong-liang L, SUN Tong, MU Bai-chun. Study on Preparation of Polyferric Aluminum Silicate from Oil Shale Ash[J]. Journal of Liaoning University of Technology (Natural Science Edition) 2010, 30(01): 37-40.
- [21] BAGHALHA M, PAPANGELAKIS V G. The Ion- association-interaction Approach as Applied to Aqueous H₂SO₄-Al₂(SO₄)₃-MgSO₄ Solutions at 250 °C[J]. Metal-

lurgical and Materials Transactions B, 1998, 29(5): 1021-1030.

- [22] AZIMI G, PAPANGELAKIS V G. The Solubility of Gypsum and Anhydrite in Simulated Laterite Pressure Acid Leach Solutions up to 250 °C[J]. Hydrometallurgy, 2010, 102(1): 1-13.
- [23] 庄相宁.聚硅酸铁铝絮凝剂的制备及其在垃圾渗滤液 预处理中的应用[D].北京:北京化工大学,2006.
 ZHANG Xiang-ning. Preparation of Inorganic Flocculant Compostie of Fe(III)-Al(III)-Si(III) for Pretreatment of Landfill Leachate[D]. Beijing: Beijing University of Chemical Technology, 2006
- [24] LI X, PEI H, HU W, et al. The Fate of *Microcystis* Aeruginosa Cells during the Ferric Chloride Coagulation

and Flocs Storage Processes[J]. Environmental Technology, 2015, 36(7): 920-928.

- [25] 彭倩, 王娟, 丁玉强. 聚硅酸亚铁复合絮凝剂的制备及 性能研究[J]. 当代化工, 2015, (2): 245-248.
 PENG Qian, WANG Juan, DING Yu-qiang. Preparation and Performance of Polysilicate-ferrous Composite Flocculant[J]. Contemporary Chemical Industry, 2015, (2): 245-248.
- [26] 范先媛,周志辉,余微,等. 类Fenton氧化-絮凝耦合处 理染料中间体废水[J]. 工业水处理, 2011, 31(5): 49-52. FAN Xian-yuan, ZHOU Zhi-hui, YU Wei, et al. Treatment of Dye Intermediate Wastewater by Fenton-like Oxidation-flocculation Coupling Process[J]. Industrial Water Treatment, 2011, 31(5): 49-52.