典型螺栓/螺母装配件湿热海洋大气 环境适应性研究

张世艳¹,张伦武¹,杨小奎¹,吴帅¹,周堃¹,符朝旭^{1,2}

(1.西南技术工程研究所,重庆 400039; 2.海南大气环境材料腐蚀国家 野外科学观测站,海南 万宁 571500)

摘要:目的研究典型螺栓/螺母装配件在湿热海洋大气环境下的适应性。方法 在万宁大气环境试验站开展 螺栓/螺母装配件为期 24 个月的户外暴露试验,通过环境扫描电镜(SEM)、电化学试验、力矩测试,研究 螺栓/螺母装配件在我国湿热海洋大气环境中的腐蚀行为和力矩变化规律。结果 装配件组合 30CrMnSiA 镀 镉钝化螺栓与 30CrMnSiA 镀镉钝化螺母(组合 A)、30CrMnSiA 镀镉钝化螺栓与 30CrMnSiA 镀锌钝化螺母 (组合 B)、30CrMnSiA 镀镉钝化螺栓与 0Cr16Ni6 钝化螺母(组合 C)对应的电偶腐蚀电流分别约为 0.6、 37、100 μA,装配状态下组合 C 户外暴露 24 个月后最大拧出力矩增加 53%。结论 装配导致的电偶腐蚀效 应对螺栓/螺母紧固件的性能变化具有明显影响,非装配状态下 30CrMnSiA 镀镉钝化螺栓在万宁户外暴露期 间没有出现基体腐蚀现象,而装配状态下组合 C 在万宁户外暴露期间出现较为严重的基体锈蚀,造成在户 外暴露期间最大拧出力矩呈不断增加趋势。

关键词:螺栓螺母装配件;户外暴露试验;电偶腐蚀;扭矩

中图分类号: TJ04 文献标识码: A 文章编号: 1672-9242(2021)11-0151-06 **DOI:** 10.7643/issn.1672-9242.2021.11.021

Adaptability Research of Typical Bolt/Nut Assembly Parts in Humid and Hot Marine Atmospheric Environment

ZHANG Shi-yan¹, ZHANG Lun-wu¹, YANG Xiao-kui¹, WU Shuai¹, ZHOU Kun¹, FU Zhao-xu^{1,2}

(1.Southwest Institute of Technology and Engineering, Chongqing 400039; 2.Hainan Materials Corrosion in Atmospheric Environment, National Observation & Research Station, Wanning 571522, China)

ABSTRACT: To study the adaptability of typical bolt/nut assembly parts in humid and hot marine atmospheric environment. The outdoor exposure test of bolt/nut was carried out in Wanning atmosphere environment test station for 24 months. The corrosion behavior and torque variation law of bolt/nut assembly in humid and hot marine atmospheric environment were studied by

收稿日期: 2021-03-21; 修订日期: 2021-05-19

Received: 2021-03-21; Revised: 2021-05-19

作者简介:张世艳(1985-),女,硕士,高级工程师,主要研究方向为装备环境适应性研究与评价。

Biography: ZHANG Shi-yan(1985—), Female, Master, Senior engineer, Research focus: research and evaluation of environmental adaptability of equipments.

通讯作者:杨小奎 (1982—),男,硕士,高级工程师,主要研究方向为材料环境适应性研究及评价。

Corresponding author: YANG Xiao-kui (1982—), Male, Master, Senior engineer, Research focus: research and evaluation of environmental adaptability of materials.

引文格式: 张世艳, 张伦武, 杨小奎, 等. 典型螺栓/螺母装配件湿热海洋大气环境适应性研究[J]. 装备环境工程, 2021, 18(11): 151-156. ZHANG Shi-yan, ZHANG Lun-wu, YANG Xiao-kui, et al. Adaptability research of typical blot/nut assembly parts in humid and hot marine atmospheric environment[J]. Equipment environmental engineering, 2021, 18(11): 151-156.

environmental scanning electron microscope (SEM), electrochemical and torque test. The galvanic corrosion current corresponding to assembly A(30CrMnSiA cadmium plating passivation bolt and 30CrMnSiA cadmium plating passivation nut), assembly B (30CrMnSiA cadmium plating passivation bolt and 30CrMnSiA zinc plating passivation nut), assembly C (30CrMnSiA cadmium plating passivation bolt and 0Cr16Ni6 passivation nut) was about 0.6, 37, 100 µA respectively, the screw torque of assembly C under assembly state increased by 53% after 24 months of outdoor exposure. The performance of bolt/nut fastener was obviously influenced by the galvanic corrosion effect caused by assembly. There was no corrosion of 30CrMnSiA cadmium plated passivation bolt in non-assembly state during outdoor exposure in Waning, while assembly C under assembly condition had more serious matrix corrosion, which caused an increasing trend of the maximum torque during outdoor exposure test.

KEY WORDS: bolt/nut assembly part; outdoor exposure test; galvanic corrosion; torque

随着对武器装备通用化、系列化、组合化(模块 化)要求的日益提高,紧固件在宇航、飞机、坦克、 舰船等武器装备中的使用范围越来越广,使用量越来 越大^[1-2]。合金钢螺栓、螺母等作为最常用的紧固件, 通常用于军用飞机起落架等关键承力部位,发挥着重 要作用。同时,随着我国东南沿海军事战略地位的提 升,军用飞机在恶劣湿热海洋大气环境中的使用频次 更高,面临的服役环境更恶劣,对紧固件等关键部件 的环境适应性要求更高。湿热海洋大气环境具有高 温、高湿、高盐雾、高太阳辐射的特点,会加速飞机 紧固件的腐蚀或破坏,引发紧固件的腐蚀、松动和脱 落,导致飞机承力部位性能下降甚至功能丧失,造成 严重的后果^[2-5]。

螺栓/螺母装配是一种常见的紧固件装配形式, 由于螺栓、螺母的材料和表面处理工艺的不同,其自 腐蚀电位存在差异,在大气环境中电解质的作用下容 易形成电偶腐蚀。其中,负电位侧的腐蚀进程被促进, 正电位侧的腐蚀进程被抑制,即阴极保护。阴、阳极 自腐蚀电位差值越大,电偶腐蚀作用越明显^[6-10]。目 前对螺栓/螺母装配件的电偶腐蚀研究主要通过模拟 盐雾环境等实验室加速试验进行^[11-19],而对其在实际 自然环境中的环境适应性研究鲜有报道。因此,文中 主要针对飞机用螺栓/螺母装配件,在海洋大气环境 中开展为期 24 个月的自然环境暴露试验,通过环境 扫描电镜(SEM)、电化学试验、力矩测试,研究螺 栓/螺母装配件在湿热海洋大气环境下的腐蚀行为和 力矩变化规律,为湿热海洋大气环境中装备的腐蚀防 护设计、维修维护提供必要的技术支持和理论支撑。

1 试验

1.1 试验装配件制备

常用于国内航空装备的螺栓、螺母是典型的紧固件产品,由一种螺栓试验件和三种螺母试验件分别组成三种装配件,详见表 1。30CrMnSiA 镀镉钝化螺栓试验件制造标准为 HB 7410—96《MJ 螺纹六角头螺栓》,30CrMnSiA 镀镉钝化螺母和 30CrMnSiA 镀锌钝

化螺母制造标准为 HB 8232—2002《MJ 螺纹六角厚自 锁螺母》, 0Cr16Ni6 钝化螺母制造标准为 HB 8269— 2002《MJ 螺纹六角厚自锁螺母》。

Tab.1 Experimental assembly parts used in this study				
组合件名	螺栓	螺母		
组合 A	30CrMnSiA 镀镉钝化螺栓	30CrMnSiA 镀镉钝化螺母		
组合 B	30CrMnSiA 镀镉钝化螺栓	30CrMnSiA 镀锌钝化螺母		
组合 C	30CrMnSiA 镀镉钝化螺栓	0Cr16Ni6 钝化螺母		

表 1 试验用螺栓、螺母装配件

1.2 湿热海洋大气环境试验

依托能代表湿热海洋大气环境的海南万宁大气 环境材料腐蚀国家野外科学观测研究站,开展装配件 的自然环境户外暴露试验^[20-21]。试验方法参照 GB/T14165—2008《金属和合金大气腐蚀试验现场试 验的一般要求》。试验时间为24个月,在试验周期分 别为6、12、18、24个月时各取样5件,分别用于腐 蚀产物分析(1件)和力学性能测试(4件)。

1.3 试样检测与分析

1)腐蚀形貌:首先观察样品宏观腐蚀形貌,然后 采用 Quanta 200 环境扫描电子显微镜观察微观形貌。

2) 力矩测试:采用 CTT1202 电子扭转试验机测 试样品的最大拧出力矩。

1.4 电化学测试

采用普林斯顿 Model 263A 恒电位仪测试系统进 行电化学测试,测试溶液为 5%NaCl 溶液。采用双电 极体系进行电偶腐蚀电流测试,螺栓、螺母的测试区 域如图 1 所示。分别留取一定面积区域作为测试区, 其余表面用聚四氟乙烯套环夹具和硅橡胶进行密封。 根据 GB 5267《紧固件电镀层》附录 G"螺栓、螺钉 和螺母的表面积",计算得出螺栓、螺母的电偶测试 区面积分别为 561.1 mm²和 491.5 mm²。

2

2.1

结果与讨论

宏观腐蚀形貌

万宁户外暴露试验24个月的螺栓、螺母装配组合 件宏观腐蚀形貌如图 2 所示。可见,在万宁站户外暴 露 24 个月后, 组合 A、组合 B 螺栓表面出现变色, 无 腐蚀现象发生;组合B螺母表面镀锌层出现大面积白 色腐蚀产物;组合C螺栓的外露螺纹区出现严重锈蚀, 腐蚀面积超过 50%; 非装配状态下, 30CrMnSiA 镀镉 钝化螺栓基体在万宁户外暴露期间无腐蚀。装配状态 的组合C与非装配状态相比,螺栓出现较为严重的基

体锈蚀,其原因将在后续的电化学分析部分详细阐述。

图 1 螺栓-螺母电偶腐蚀测试区域 Fig.1 Test regions of the bolt and nut for galvanic corrosion

d 未装配螺栓

Fig.2 Macroscopic corrosion morphology of assembly parts after 24 months Wanning outdoor exposure: a) assembly A; b) assembly B; c) assembly C; d) non-assembly bolt

2.2 微观腐蚀形貌

对组合C螺栓进行微观形貌分析,如图3所示。 由图 3 可知,万宁户外暴露试验 12 个月和 24 个月后, 装配状态下 30CrMnSiA 镀镉钝化螺栓的基体外露螺 纹部位出现的腐蚀产物主要呈现出沙粒状(γ-FeOOH)、 球状(γ-FeOOH)、颗粒状(γ-FeOOH)形貌。同时, 高倍图像形貌显示,球状结构的周围有部分针状或须 状(α-FeOOH)的腐蚀产物。

2.3 螺栓-螺母电偶腐蚀电化学分析

电偶腐蚀电流是最能直接表征电偶效应的参 量。分别测试了三种螺栓-螺母组合试验件的电偶电 流, 组合 A、组合 B 将螺母与工作电极线相连进行 测试;组合C将螺栓与工作电极线相连进行测试。 三种螺栓-螺母组合的电偶腐蚀电流测试结果如图 4 所示。

从图 4 可以看出, 3 种组合的电偶腐蚀电流实测 值均在零轴下方,说明与工作电极线相连的一端为电 偶腐蚀阳极,即组合A、组合B对应的螺母为腐蚀阳 极,组合 C 中的螺栓为腐蚀阳极,这导致组合 A 和 组合 B 的螺母、组合 C 的螺栓腐蚀被加速,而相应

的装配件腐蚀被减缓或抑制,即被保护。对比三种组 合下的电偶腐蚀电流可知,组合 C 对应的电偶腐蚀电 流绝对值最大,约为 100 µA,组合 B 次之,约为 37 μA, 组合 A 最低, 约为 0.6 μA, 这说明组合 C 的 电偶效应最显著,而组合 A 的电偶效应最弱。

根据上述测得的电偶电流结果,分别对不同组合 的螺栓螺母进行面积的相除,即得到螺栓螺母在不同 组合下的电偶腐蚀电流密度。参照 HB 5374—1987 《不同金属电偶电流测定方法》中给出的电偶腐蚀敏 感性评定分级方法,根据计算所得的电偶腐蚀电流密 度,即可对三种螺栓-螺母组合中的电偶腐蚀阳极进 行电偶腐蚀敏感性评级。

三种组合件中螺栓的电偶腐蚀电流密度变化曲 线如图 5 所示。由图 5 可知,组合 A 中螺栓的电偶 腐蚀电流密度接近于 0, 说明组合 A 的电偶效应不明 显;组合 B 中螺栓的电偶腐蚀电流密度值为负值,说 明组合 B 中螺栓为电偶阴极,腐蚀被保护;组合 C 中螺栓的电偶腐蚀电流密度为正值,说明组合C中螺 栓为电偶腐蚀阳极,腐蚀进程被加速。

三种组合件中螺栓的电偶腐蚀电流密度稳定值 以及对应的电偶腐蚀敏感性评级见表 2。组合 C 中与 钝化螺母相连的镀镉钝化螺栓为腐蚀阳极,对应的电

c24个月,1000×

d 24个月, 4000×

图 3 组合 C 螺栓万宁户外暴露 12、24 个月螺纹腐蚀产物微观形貌

Fig.3 Microstructure of thread corrosion products of assembly C after 24 months Wanning outdoor exposure: a)12 months,1000×; b) 12 months,4000×; c)24 months,1000×; d)24 months,4000×

Fig.4 Galvanic corrosion currents test results of the three assembly parts: a) assembly A; b) assembly B; c) assembly C

表 2 三种组合件中螺栓的电偶腐蚀敏感性评级结果					
Tab.2 Galvanic corrosion sensitivity ratings for bolts in the three assembly parts					
评级结果	组合 A 中 30CrMnSiA 镀镉	组合 B 中 30CrMnSiA 镀镉	组合 C 中 30CrMnSiA 镀镉		
	钝化螺栓	钝化螺栓	钝化螺栓		
电偶腐蚀电流密度/(A·cm ⁻²)	-1.05356×10^{-7}	-6.62605×10^{-6}	1.8978×10^{5}		
电偶腐蚀敏感性评级	—	—	Е		

偶腐蚀电流密度约为 18.9 μA/cm², 电偶腐蚀敏感性 评级为 E 级。

不同组合下螺母的电偶腐蚀电流密度如图 6 所

示。由图 6 可知,组合 A 中螺母电偶腐蚀电流密度 接近为 0,进一步说明组合 A 的电偶效应不明显;组 合 B 中螺母电偶腐蚀电流密度值为正值,说明组合 B 3.0

2.0

1.0

0

图 5 三种组合件中螺栓的电偶腐蚀电流密度 Fig.5 Galvanic corrosion currents for bolts of the three assembly parts

中螺母为电偶腐蚀阳极,腐蚀被加速;组合C中的螺 母电偶腐蚀电流密度为负值,说明组合 C 中的螺母为 电偶腐蚀阴极,腐蚀被抑制。

不同组合下螺母的电偶腐蚀电流密度稳定值以 及对应的电偶腐蚀敏感性评级见表 3。由表 3 可知,

组合 A 和组合 B 的螺母均为电偶腐蚀阳极,其中组 合 A 中螺母电偶腐蚀电流密度约为 0.12 μ A/cm², 对 应电偶腐蚀敏感性评级为 A 级; 组合 B 中螺母电偶 腐蚀电流密度约为 7.6 µA/cm², 对应电偶腐蚀敏感性 评级为D级。

三种组合件中螺母的电偶腐蚀电流密度 图 6

Fig.6 Galvanic corrosion current density for nuts in the three assembly parts

表 3 三种组合件中螺母的电偶腐蚀敏感性评级结果 Tab.3 Galvanic corrosion sensitivity ratings for nuts in the three assembly parts

评级结果	组合 A 中 30CrMnSiA 镀镉钝化螺母	组合 B 中 30CrMnSiA 镀锌钝化螺母	组合 C 中 0Cr16Ni6 钝化螺母
电偶腐蚀电流密度/(A·cm ⁻²)	1.20275×10^{-7}	7.56435×10^{-6}	-2.16655×10^{-6}
电偶腐蚀敏感性评级	А	D	—

2.4 最大拧出力矩

装配状态下合金钢螺栓与螺母组合件在万宁暴 露期间的最大拧出力矩变化如图 7 所示。可见, 万宁 站户外暴露期间,组合A、组合B最大拧出力矩呈波 动变化趋势: 组合 C 最大拧出力矩呈单调增加趋势, 户外暴露 24 个月后,最大拧出力矩增加 53%。螺栓与 螺母装配件的最大拧出力矩(180°~210°)同螺母-螺 栓螺纹间的摩擦力大小直接相关,螺栓螺母连接区域 的基体锈蚀会造成螺母-螺栓螺纹间的摩擦力增加。

螺栓和螺母装配件万宁户外暴露最大拧出力矩 图 7 Fig.7 The maximum torque of the three assembly parts during Wanning outdoor exposure test

结论 3

 1)组合 C 电偶腐蚀电流绝对值最大,约为 $100 \mu A/cm^2$, 组合 B 次之, 组合 A 最低, 这表明组合 C 电偶效应最显著,而组合 A 电偶效应最弱。装配件组 合电偶腐蚀效应大小顺序为:组合 C>组合 B>组合 A。

2) 合金钢螺栓和螺母的装配会导致电偶腐蚀效 应,在湿热海洋大气环境中有明显的腐蚀现象。非装 配状态下 30CrMnSiA 镀镉钝化螺栓在万宁户外暴露 期间没有出现基体腐蚀现象,而装配状态下组合 C 在万宁户外暴露期间基体锈蚀较为严重。主要原因是 在镀镉钝化螺栓+钝化螺母组合中,钝化螺母作为电 偶阴极,抑制了腐蚀进程;镀镉钝化螺栓作为电偶阳 极,加速了腐蚀进程,且腐蚀电流密度较高。

3) 万宁站户外暴露期间,组合A、组合B最大 拧出力矩呈波动变化趋势:组合C最大拧出力矩呈单 调增加趋势,户外暴露 24 个月后,最大拧出力矩增 加了 53%。其主要原因是螺栓螺母连接区域的基体锈 蚀造成螺母-螺栓螺纹间的摩擦力增加。

参考文献:

赵庆云, 刘风雷, 刘华东. 世界先进航空紧固件进展 [1]

[J]. 航空制造技术, 2009, 52(3): 54-56.

ZHAO Qing-yun, LIU Feng-lei, LIU Hua-dong. Development of advanced aerospace fastener[J]. Aeronautical manufacturing technology, 2009, 52(3): 54-56.

- [2] 曹宏涛,李雪亭.基于海洋环境的紧固件腐蚀防护要求及技术措施[J].表面技术,2013,42(1):105-108.
 CAO Hong-tao, LI Xue-ting. Corrosion protection requirements and technical measures of fasteners based on the marine environment[J]. Surface technology, 2013, 42(1):105-108.
- [3] 张汛涛. 17-4PH 航空紧固件耐腐蚀性能影响因素研究
 [D]. 天津: 中国民航大学, 2018.
 ZHANG Xun-tao. Study on the corrosion resistance influencing factors of 17-4PH aviation fasteners[D]. Tianjin: Civil Aviation University of China, 2018.
- [4] 曾凡阳, 刘元海, 丁玉洁. 海洋环境下军用飞机腐蚀及 其系统控制工程[J]. 装备环境工程, 2013, 10(6): 77-81, 107.

ZENG Fan-yang, LIU Yuan-hai, DING Yu-jie. Research on corrosion and system engineering control technology of military aircraft in marine environment[J]. Equipment environmental engineering, 2013, 10(6): 77-81, 107.

- [5] NAKAMURA Y, YOSHIHARA S, MAC DONALD B J, et al. Effect of axial force on corrosion behavior of SUS304 stainless steel bolt[J]. Advanced materials research, 2014, 922: 519-524.
- [6] 陈兴伟,吴建华,王佳,等. 电偶腐蚀影响因素研究进展[J]. 腐蚀科学与防护技术, 2010, 22(4): 363-366. CHEN Xing-wei, WU Jian-hua, WANG Jia, et al. Progress in research on factors influencing galvanic corrosion behavior[J]. Corrosion science and protection technology, 2010, 22(4): 363-366.
- [7] 姜招喜, 许宗凡, 张挺. 紧固件制备与典型失效案例
 [M]. 北京: 国防工业出版社, 2015.
 JIANG Zhao-xi, XU Zong-fan, ZHANG Ting, et al. Fastener preparation and typical failure cases[M]. Beijing: National Defense Industry Press, 2015.
- [8] SHAN Mei-le, GUO Kang, GOU Guo-qing, et al. Effect of anodizing on galvanic corrosion behavior of T300 CFRP/5083P-O Al bolted joints[J]. Materials and corrosion, 2020, 71(3): 409-418.
- [9] SCHNEIDER M, KREMMER K, LÄMMEL C, et al. Galvanic corrosion of metal/ceramic coupling[J]. Corrosion science, 2014, 80: 191-196.
- [10] WINT N, LEUNG J, SULLIVAN J H, et al. The galvanic corrosion of welded ultra-high strength steels used for automotive applications[J]. Corrosion science, 2018, 136: 366-373.
- [11] 郁春娟, 黄桂桥. 常用金属紧固件在水环境中的腐蚀 行为[J]. 装备环境工程, 2010, 7(5): 4-7, 12.
 YU Chun-juan, HUANG Gui-qiao. Corrosion behavior of usual metallic fastener in water environment[J]. Equipment environmental engineering, 2010, 7(5): 4-7, 12.
- [12] 宁丽君. 典型紧固件涂镀层在模拟海洋环境中的腐蚀 行为[D]. 济南: 山东大学, 2012.
 NING Li-jun. Corrosion behavior of typical fasteners in simulation marine environment[D]. Jinan: Shandong University, 2012.
- [13] 杨祎,赵俊军,王茂川,等.合金钢螺栓海洋气候环境

适应性研究[J]. 装备环境工程, 2018, 15(1): 40-44.

YANG Yi, ZHAO Jun-jun, WANG Mao-chuan, et al. Marine climate environmental adaptability of alloy steel bolt[J]. Equipment environmental engineering, 2018, 15(1): 40-44.

[14] 卢松涛, 刘立东, 杨浩亮, 等. 盐雾环境下部段对接紧 固件耐腐蚀性研究[J]. 宇航总体技术, 2018, 2(4): 59-64.

LU Song-tao, LIU Li-dong, YANG Hao-liang, et al. Research on corrosion resistance of the fastener on connection section structure in salt fog[J]. Astronautical systems engineering technology, 2018, 2(4): 59-64.

- [15] 王洪伦,林志峰,张邦双. 濒海环境钢质紧固件防腐技术试验对比研究[J]. 装备环境工程, 2019, 16(4): 93-97.
 WANG Hong-lun, LIN Zhi-feng, ZHANG Bang-shuang. Comparative test on anti-corrosion technology of steel fasteners in coastal environment[J]. Equipment environmental engineering, 2019, 16(4): 93-97.
- [16] 杨祎,赵俊军,杨小奎,等.盐雾环境对军用飞机高强 螺栓疲劳极限的影响[J].装备环境工程,2017,14(3): 57-59.
 YANG Yi, ZHAO Jun-jun, YANG Xiao-kui, et al. Effects of salt-fog environment on fatigue limit of high strength bolt for military airplane[J]. Equipment environmental engineering, 2017, 14(3): 57-59.
- [17] 朱金阳, 李明, 李刚, 等. 装配对典型螺栓/螺母紧固件 盐雾环境腐蚀行为的影响[J]. 工程科学学报, 2018, 40(2): 217-225.
 ZHU Jin-yang, LI Ming, LI Gang, et al. Influence of assembly on corrosion behaviors of bolt/nut connections in a salt-spray environment[J]. Chinese journal of engineering, 2018, 40(2): 217-225.
- [18] 刘小辉,单广斌.沿海工业大气环境下的不锈钢螺栓 腐蚀开裂原因分析[J].石油化工设备技术,2014,35(2): 31-33.

LIU Xiao-hui, SHAN Guang-bin. Failure analysis of the stainless steel bolt fracture in the coastal industrial atmospheric environment[J]. Petrochemical equipment technology, 2014, 35(2): 31-33.

- [19] 冯子峰,邓明,赵玉江. 奥氏体不锈钢紧固件电偶腐蚀 原因分析与防护[J]. 装备环境工程,2009,6(5):10-15. FENG Zi-feng, DENG Ming, ZHAO Yu-jiang. Analysis and protection of galvanic corrosion on austenitic stainless steel fasteners[J]. Equipment environmental engineering, 2009, 6(5): 10-15.
- [20] 杨小奎,张伦武,胡滨,等. 7475 高强铝合金在海洋和 乡村大气环境中的腐蚀行为研究[J]. 表面技术, 2019, 48(1): 262-267.
 YANG Xiao-kui, ZHANG Lun-wu, HU Bin, et al. Corrosion behavior of 7475 high-strength aluminium alloy in marine and rural atmosphere environments[J]. Surface technology, 2019, 48(1): 262-267.
- [21] 罗来正,肖勇,苏艳,等. 7050 高强铝合金在我国四种 典型大气环境下腐蚀行为研究[J]. 装备环境工程, 2015, 12(4): 49-53.
 LUO Lai-zheng, XIAO Yong, SU Yan, et al. Corrosion behavior of 7050 high-strength aluminum alloy in four typical atmospheric environments in China[J]. Equipment environmental engineering, 2015, 12(4): 49-53.