航空航天装备

空空导弹热防护性能测试技术研究现状

罗楚养¹, 蒋嘉瑞¹, 程功², 黄益民², 蔡钰伟¹, 李晓升²

(1.东华大学 民用航空复合材料协同创新中心,上海 201620;2.中国空空导弹研究院,河南 洛阳 471009)

摘要:详细梳理了当前空空导弹热防护性能测试领域的四大主流技术,包括氧-乙炔/等离子烧蚀技术、激光 辐照技术、石英灯辐射技术以及高焓风洞技术。这些技术各具特点,在模拟真实飞行条件、评估热防护效 果方面发挥着不可替代的作用。对每种技术的研究现状进行了深入剖析,展望了未来可能的发展趋势和潜 在的关键技术,可以对空空导弹热防护性能测试技术有一个更加全面、深入的了解,为相关领域的研究和 实践提供有益的参考和借鉴。

关键词:热防护;氧-乙炔/等离子烧蚀;激光辐照;石英灯辐射;高焓风洞
中图分类号:TJ760 文献标志码:A 文章编号:1672-9242(2024)12-0058-13
DOI: 10.7643/issn.1672-9242.2024.12.008

Research Status of Thermal Protection Performance Test Technology for Airborne Missiles

LUO Chuyang¹, JIANG Jiarui¹, CHENG Gong², HUANG Yimin², CAI Yuwei¹, LI Xiaosheng²

Center for Civil Aviation Composites, Donghua University, Shanghai 201620, China;
 China Airborne Missile Academy, Henan Luoyang 471009, China)

ABSTRACT: The work aims to comprehensively review the current state of four mainstream technologies in the thermal protection performance test of airborne missiles, including oxyacetylene/plasma erosion technology, laser irradiation technology, quartz lamp radiation technology, and high enthalpy wind tunnel technology. Each technology has unique characteristics and plays an indispensable role in simulating actual flight conditions and evaluating the effectiveness of thermal protection. The in-depth analysis is conducted to the research status of each technology and the potential future developments and key technologies are prospected. Through this review, a more comprehensive and in-depth understanding of airborne missile thermal protection performance test technologies is obtained, providing valuable references and guidance for related research and practical applications.

KEY WORDS: thermal protection; oxyacetylene/plasma ablation; laser irradiation; quartz lamp radiation; high enthalpy wind tunnel

收稿日期: 2024-07-01; 修订日期: 2024-09-08

Received: 2024-07-01; Revised: 2024-09-08

基金项目:高能束流加工技术国家级重点实验室基金(KZ571801);中央高校基本科研业务费专项资金(2232022D-28);上海市轻质结构复合材料重点实验室基金(2232021A4-02);航空科学基金(20200001012004)

Fund: Foundation of Science and Technology on Power Beam Processes Laboratory (KZ571801); Fundamental Research Funds for the Central Universities (2232022D-28); Foundation of Shanghai Key Laboratory of Lightweight Composite (2232021A4-02); Aeronautical Science Fund (20200001012004)

引文格式:罗楚养,蒋嘉瑞,程功,等.空空导弹热防护性能测试技术研究现状[J].装备环境工程,2024,21(12):58-70.

LUO Chuyang, JIANG Jiarui, CHENG Gong, et al. Research Status of Thermal Protection Performance Test Technology for Airborne Missiles[J]. Equipment Environmental Engineering, 2024, 21(12): 58-70.

随着武器装备的更新换代,空空导弹的飞行速度 越来越快,射程越来越远,所处的热环境也越来越苛 刻^[1]。一方面,在高超声速飞行过程中,空空导弹会 经历极端的气动热环境,其表面温度随着时间急剧变 化,形成极为严酷的热负荷条件。在面对极端热流冲 击的情况下,空空导弹可能遭受外形的热损伤和结构 变形,乃至损毁,这严重威胁其运行安全,并可能对 导弹内部的电子系统产生负面效应。同时,极端热环 境还可能在导弹结构中诱发热应力和热形变,这些形 变又会导致气动特性的改变,进一步影响飞行轨迹与 姿态的稳定性^[2]。为确保弹体结构在严酷气动热环境 下的服役安全性,通常需要对弹体结构进行热防护设 计。另一方面, 空空导弹发动机在工作时, 壳体内部 存在强气流冲刷、粒子冲蚀的使用工况,为保证发动 机壳体不被高速高温燃气流烧穿,需要在壳体内部增 加绝热层。可见,热防护系统是高超声速空空导弹的 关键组成部分。为确保高速空空导弹在极端热流和高 温环境下的结构完整性与功能安全,必须通过静态和 动态的气动热模拟实验来检验弹体材料的耐热性能 和结构的热应力耐受能力,以此评估热防护系统在高 温条件下的隔热效果。空空导弹在自主飞行过程中通 常面临超高温、大热流、非线性的极端气动热环境, 因此,如何在地面有效地模拟这种复杂瞬变的气动热 环境成为确保热防护系统安全服役的关键问题之一。

在对空空导弹的高温热环境进行再现或模拟的 气动热试验中,方法大致可分为2种:一种是通过"对 流方式",如利用氧-乙炔/等离子烧蚀或高焓风洞技 术,让高温气流强制流过导弹表面,从而实现对流换 热;另一种是非"对流方式",它以热传导或热辐射 为主要的热交换机制,例如激光辐照和石英灯辐射加 热。在非对流方式中,石英灯红外辐射技术因其较早 发展并广泛应用而成为一种常见的模拟试验技术[3-8]。 氧-乙炔/等离子烧蚀和激光辐照通常是局部小面积加 热。氧-乙炔/等离子烧蚀操作简单、变量可控、成本 较低、可长时间作用,但作用面积较小、热流密度不 可控、温度不均匀且存在较大波动。相对而言,激光 辐照的光斑直径可变,且有一定大小,热流密度高且 稳定可控,但存在功率密度难以在较大光斑直径时维 持较高水平等缺点。两者常用于材料防隔热性能的测 试,难以实现结构热防护性能考核^[9]。石英灯热辐射 和高焓风洞则可实现大面积的气动热模拟,通常用于 结构热防护系统性能的考核^[10-11]。石英灯辐射加热的 辐射面积大,效率高,易于电控,且设备体积小,可 组装成不同尺寸和形状,但不适合1200℃以上的长 时高温热试验。高焓风洞虽然成本昂贵,无法复现真 实飞行的热流曲线,但可以同时模拟气动热以及气流 剪切作用,适合对热防护系统进行最终的考核验证。

本文综述了氧-乙炔/等离子烧蚀技术、激光辐照 技术、石英灯辐射技术、高焓风洞技术在空空导弹热 防护性能测试上的研究现状,并对其未来的关键技术 进行了展望。

1 氧-乙炔/等离子烧蚀试验技术

氧-乙炔烧蚀试验方法以稳定的氧-乙炔焰流为热 源,将焰流以90°角冲烧试样,从而对材料进行烧蚀, 焰流温度可达 3 000 ℃,热流密度约为 0.4 kW/cm², 通常用于低热流密度下材料烧蚀性能和防隔热性能 的测试[12-13]。相比于氧-乙炔烧蚀这种模拟材料在高 温化学燃烧环境下的防隔热性能试验方法,使用高 温、高能量的等离子烧蚀则可以更真实地模拟材料在 极端空间环境中的实际工作状况。等离子体烧蚀技术 利用高压电离产生的高温等离子体火焰对材料进行 热处理,该技术的火焰温度可达到 16 000 ℃,热流 密度比氧-乙炔更为集中[12-15]。在氧-乙炔/等离子体烧 蚀试验中,通过监测试样背面的温度以及试验前后试 样尺寸和质量的变化,可以计算得到材料的关键热防 护性能参数。氧-乙炔/等离子体烧蚀试验装置包括控 制系统、测量装置、供气系统和水冷系统等部分,如 图1所示。这种试验技术操作简便,变量易于控制, 成本相对较低,适合于长时间作用的试验,常用于对 热流密度要求不是特别高且不涉及热气流影响的材 料热防护性能评估。如应用于空空导弹外防热涂层材 料的初步热防护性能测试通常采用氧-乙炔或等离子 烧蚀试验[16]。

图 1 氧-乙炔/等离子烧蚀示意图 Fig.1 Schematic diagram of oxyacetylene/plasma ablation

采用氧-乙炔烧蚀试验方法,郭倩^[17]在乙炔流量 为 50 L/min、氧气流量为 33 L/min、冷却空气压力为 0.3 MPa 的烧蚀条件下,研究了 C_f/ZrC-SiC 的抗烧蚀 性能,为航空发动机燃烧室等需要承受超高温和较低 气流冲刷速度部位的烧蚀性能考核提供了参考。向阳 等^[18]在氧气流量为 25.2 L/min、乙炔流量为 93 L/min、 烧蚀时间为 15 s 的条件下,测试了陶瓷基复合材料、 气凝胶隔热材料层和陶瓷基复合材料 3 层结构依次 穿刺连接形成的耐高温防隔热一体化热防护结构的 抗热烧蚀性能,验证了该防热结构良好的抗氧化耐烧 蚀性能。牟秀娟等^[19]在1300℃加热 60 s 条件下通过 氧-乙炔烧蚀试验测试验证了蜂窝夹芯树脂基防热复 合材料的抗烧蚀及隔热性能。时圣波等^[20-22]通过氧-乙炔烧蚀试验验证了复合材料波纹夹芯一体化热防 护结构良好的隔热性能,并研究了石英纤维增强酚醛 复合材料在快速升温下的烧蚀行为,为确定烧蚀材料 中组分的含量和性能及进一步设计隔热板提供了参考。

此外,氧-乙炔烧蚀测试法具有操作简便、成本效益高和即时反馈的优点,其目前已经成为评估超高温材料抗氧化烧蚀性能的常用方法。如孙丹羽等^[23]通过氧-乙炔烧蚀试验,对C/C-UHTC(碳/碳-超高温和耐热复合材料)进行了烧蚀性能的测试,以适应飞行器在高超声速飞行时所面临的极端高温环境。试验结果显示,与传统的C/C、C/SiC复合材料相比,C/C-UHTC复合材料展现出了更为优异和可靠的抗氧化烧蚀性能。这项研究不仅验证了C/C-UHTC复合材料的高效性能,而且为航空航天领域贡献了一种先进的热防护解决方案,有助于提高飞行器在极端温度下的保护能力。

采用等离子烧蚀试验方法,聂景江等^[24]分析了三 维针刺 C/SiC 复合材料的烧蚀性能,并发现烧蚀表面 不同区域其烧蚀机理不同,从而考核验证了材料良好 的防隔热性能。章俭诚等[25]分别在单一等离子热流和 更高燃料比冲的双相流的烧蚀环境下,对C/SiC-ZrB2-TiB2复合材料进行了烧蚀,测试其在不同温度下的线 烧蚀率,进而使此种热防护材料的防隔热性能得到了 验证。罗骁等^[26]使用 Multiplaz 3500 等离子体烧蚀设 备对经过涂层改性的 C/C 复合材料样品进行了高温 烧蚀试验。在烧蚀持续时间为 30 s 条件下, 样品被加 热至大约2300℃,以此来评估其在极端温度下的烧 蚀性能。Shi 等^[27]采用小型等离子烧蚀设备在高焓多 相射流条件下测试了 4D C/C 复合材料的烧蚀性能, 通过 CFD (Computational Fluid Dynamics) 对等离子 体设施进行了烧蚀流场研究,评估其烧蚀/侵蚀性能, 验证了其防隔热性能。王玉金等^[28]在加热器功率约 100 kW的试验条件下,用约为5 000 ℃的等离子弧 在等离子烧蚀试验机上对ZrCP/W复合材料的烧蚀性 能进行了研究,结果表明,ZrCP/W 复合材料是一种 很好的航天防热材料,并进一步评价了材料的烧蚀性 能。王富强等^[29]通过 Plazjet 7700 II 装置对 W-Si C-C/C 材料样品进行了烧蚀。试验利用流量比约为5:2的氮 气、氢气,在 200 kW 功率条件下测试了该热防护材 料在超高温下的抗烧蚀性能。等离子烧蚀因热流密度 更集中、温度更高、易控制烧蚀角等优势在众多超高 温材料烧蚀性能测试方法中脱颖而出,成为飞行器热 防护材料防隔热性能测试的重要方法之一。例如,

Metco 公司 9M 型喷枪和 F4 型喷枪就采用等离子体 产生高温焰流。这 2 种型号等离子体喷枪还被马康智 等^[12]用来搭建了等离子烧蚀试验平台,并通过对烧蚀 距离的不断变化来测试等离子喷枪的热流密度。

综上所述,氧-乙炔烧蚀和等离子体烧蚀目前通常用于评估材料在高温环境下的耐烧蚀性能。氧-乙 炔烧蚀试验通常使用氧-乙炔火焰作为热源,这种方 法操作简便,设备成本低,适合于多种防热、绝热、 包覆材料以及碳/碳复合材料等的烧蚀试验^[12-13]。等 离子体烧蚀试验使用高温、高能量的等离子体,更适 合模拟极端高温环境下的烧蚀情况,即实际环境中的 极端条件,如在导弹烧蚀防热复合材料上的应用,这 2种测试方法的主要区别在于温度和能量密度。此外, 氧炔焰和等离子流在冲击靶件后会产生扩散,这会使 温度与热流更加难以把控,同时易产生较大波动,故 不适合较大结构的试验^[13]。该方法多用于固体火箭发 动机用橡胶基或树脂基防热、绝热、包覆材料的烧蚀 (烧穿)试验。

2 激光辐照加热测试技术

激光具有热流密度高且稳定可控、光斑直径可变 且有一定大小、试验装置简单、成本低廉、可长时间 作用等优势,其中连续激光更是可以宽范围选择运行 波长,且有高信噪比和极高稳定性,近年来在超高温 防热材料及结构的烧蚀性能考核中得到了越来越多 的应用^[30]。另外, 激光辐照呈高斯分布的热源特点与 飞行器驻点的温度分布有一定相似性,其驻点处热流 密度极高,是氧-乙炔和石英灯等所难以模拟的。激 光辐照试验通过聚焦高能激光束,对热防护材料进行 局部加热,能够模拟导弹头部在高速飞行中遭遇的极 端热负荷。针对氧-乙炔烧蚀中作用面积小、热流密 度不可控、温度不均匀且存在较大波动等缺点,激光 辐照加热因其稳定可控的超高热流密度而逐渐成为 测试超高温材料和结构热防护与耐烧蚀性能的重要 手段之一[13]。目前常规高功率激光的输出功率已突破 20 kW,并且在向更高功率提升^[31]。激光烧蚀试验原 理如图2所示。

在树脂基复合材料领域, Zhang 等^[32]使用 1 080 nm 波长的光纤激光对碳纤维增强聚芳基醚酮热塑性复 合材料进行了烧蚀,并研究了其烧蚀性能和机理,为 研究烧蚀后材料的损伤耐受性和激光烧蚀涂层及其 保护效果提供了方法。李飞^[30]基于波长为1060 nm、 光斑直径 5 mm 的 CO2 激光辐照, 模拟并研究了复杂 热载荷下固体火箭冲压发动机绝热层在工作条件下 的烧蚀特性。Ma 等^[33]使用高能 Nd:YAG 连续光纤激 光,在激光波长为1070 nm 的状态下研究了碳化锆 改性短碳纤维增强酚醛树脂基复合材料烧蚀行为,测 试出了该材料在模拟气动热环境下的防隔热性能。于 庆春等^[34]使用波长为1064 nm的Nd:YAG激光,通 过调整激光辐照功率密度研究了片状石墨增强钡酚 醛树脂基复合材料的耐烧蚀性能。在此基础上, Xu 等^[35]使用 Nd:YAG 连续激光, 在波长为 1 064 nm、功 率密度为1000 W/cm²的条件下辐照 TaSi₂和 ZrSi₂改 性碳纤维增强酚醛树脂复合材料,并测试了这2种复 合材料的抗长期烧蚀能力。

在陶瓷基复合材料领域,通过激光辐照测试,Zou 等^[36]与 Daniel 等^[37]使用 Nd:YAG 激光研究了 RF-BN 复合材料的耐烧蚀性能,辅以氧-乙炔试验后分析了 其烧蚀机理,从而进一步验证了 RF-BN 复合材料的 防隔热性能。借助 CO₂ 激光加热装置,殷金其^[38]研 究了航天热防护烧蚀材料 AY2 与聚四氟乙烯的烧蚀特 性与影响因素。Liu 等^[39]借助 CO₂连续激光在 1 060 nm 的波长下表征了碳/碳复合材料表面碳化硅和碳化锆 涂层的激光烧蚀性能。Wen 等^[40]研究了 HfC/SiC 陶瓷 和 C_f/SiHfC 基复合材料在 CO₂连续激光辐照下的抗 烧蚀性能。Zhuang 等^[41]基于 1 080 nm 的连续光纤激 光研究了 2.5D Si₃N_{4f}/SiBN-CMCs 的多尺度烧蚀机理 及性能,发现激光辐照过程中产生的连续熔融层可以 有效地提高材料的耐烧蚀性能。

在耐烧蚀涂层领域,孔静等^[42]使用不同功率激 光连续烧蚀不同时间后,测试并分析了La0.9Sr0.1TiO3 涂层激光烧蚀性能。Xu 等^[43]通过激光辐照研究了 3 种树脂材料复合涂层的激光烧蚀性能与光学行为。 之后 Xu 等^[44]对 ZrC 和 SiC 增强的甲阶酚醛树脂基 BPF 复合涂层进行了以 1 070 nm Nd:YAG 连续激光 为光源的烧蚀试验,着重考察了涂层的反射率与其 抗激光烧蚀能力之间的关系。Wang 等^[45]采用 1 060~ 1 090 nm 波长的连续激光, 探究了 Nd₂O₃ 掺杂 SiO₂ 涂层的激光烧蚀行为及其反射率对烧蚀抵抗的作 用,如图 3 所示。陶杰等^[46]提出在飞行器表面涂覆 固化后的聚碳硅烷复合涂层,并通过不同功率级别 的 CO₂ 连续激光试验,验证了该涂层在抵抗激光烧 蚀过程中能形成耐高温的 SiC 陶瓷和游离碳层,从而 增强了材料的激光防护性能。李雅娣等^[47]采用光斑直 径为 10 mm、输出功率为 5 kW 的连续 CO_2 激光, 研 究了氧化锆涂层应用在金属及复合材料基底上的耐 烧蚀特性。

图 3 Nd₂O₃改性 SiO₂涂层的激光烧蚀机理过程^[46] Fig.3 Ablation mechanism of the SiO₂-Nd₂O₃ coating^[46]

虽然激光辐照在树脂基复合材料领域、陶瓷基复 合材料领域及耐烧蚀涂层领域的材料抗烧蚀性研究 及驻点区域的局部热防护性能考核方面均有较好的 应用,但是激光目前在较大光斑直径时功率密度难以 维持在较高水平^[31,34]。同时,因其能量呈高斯分布, 无法真实模拟大面积的气动热分布,且不能模拟气流 环境,只能模拟单一的热环境,因此难以实现飞行器 大面积防热结构的考核验证。

3 石英灯辐射加热试验技术

相较于以上几种只能在小范围内加热试样且作 用点单一,无法大面积精准控温的方式,石英灯辐射 加热则可形成较大的辐射面积,且温度较前者更加均 匀可控^[13]。石英灯加热装置具备热惯性低、热效率高 的特点,便于电气控制,十分适宜在静热联合试验中 实现精准的时序加热,也能够很好地模拟导弹在大气 层内飞行时的热环境^[48-49]。此外,该设备体积紧凑而 功率强大,能够灵活配置成各种尺寸和形态,既能满 足大型整体结构的热试验需求,也能应对小型组件的 热试验任务,并且对形状和结构复杂的试验对象具有 良好的适应性^[50-52]。在进行试验时,石英灯被布置在 待测件表面的紧邻区域,通过辐射方式对样品进行加 热^[48]。其实测系统热源温度上限可达到 3 180 ℃,且 温度控制误差在 5%以内^[53-56]。石英灯加热装置如图 4 所示。

邓婉等^[57]通过石英灯阵试验研究了热流密度分 别为 15、30、45 kW/m²,持续作用时间均为 400 s 下 气瓶热防护材料的隔热性能。李健等^[58]通过石英灯加 热并结合仿真计算,研究了由多种功能层材料组成的

图 4 石英灯加热烧蚀试验 Fig.4 Quartz lamp heating ablation experiment

热防护组件的结构设计方法与热防护性能。刘岩等^[59] 选用石英灯作为热源,并在热真空模拟系统中实施了 信号电缆隔热材料的封装方案评估试验,旨在对热防 护方案的有效性进行试验验证。丁智力等^[60]用单根额 定功率为 3.6 kW 的石英灯并联成石英灯阵,对某型 飞行器的复合材料/金属连接区进行加热,以测试试 件在力热耦合下的性能。宋若康等^[61]采用石英灯辐射 加热方式分析了有机硅树脂基复合材料和酚醛基复 合材料的防隔热性能,并结合其他测试对材料的防热 性能进行了表征。时圣波等^[62-63]利用石英灯辐射加热 方式,分别对波纹芯复合夹芯板和硅橡胶基涂层进行 了热暴露试验测试,研究了其防热机理、热解和烧蚀 性能。

另外,吴大方等[64]采用石英灯红外加热装置,结 合模糊控制技术,实现飞行器的气动模拟加热过程迅 速且精确地动态调控,进而有效模拟出飞行器在高速 飞行状态下表面热流和温度的连续瞬时变化。这一技 术主要解决了在模拟飞行器高超声速飞行时的瞬态 热控技术存在的强耦合和非线性等问题。之后,利用 该系统鲁棒性好、对动态参数变化有很强的适应性及 可控温升速率可达 210 ℃/s 的特点, 对金属蜂窝平板 结构在高达 800 ℃的高温环境下的隔热性能进行了 测试,旨在为导弹热防护结构设计提供理论支持和参 考[65]。同时,在热-振联合试验方面,其采用了由多 个石英灯组成的红外加热系统,对高速巡航导弹的翼 面进行了加热处理,并在此基础上进行了热环境下的 热-振耦合试验(如图5所示),详细记录了在不同温 度环境下,翼面结构固有频率等动态特性的变化,所 得数据对于确保导弹翼面结构在高温高速飞行环境 中的设计安全性具有重要意义。此外,他们开发的石 英灯红外辐射装置能够达到 1500 ℃的试验温度和 2 MW/m² 的热流密度^[66-67]。此外,其还设计直径为 14 mm、长度为 2.25 m, 长度/直径比接近 160 的超长 大功率石英灯加热器,成功实现了对长达 2.1 m 的大 型壳体结构进行单区域的连续加热试验(如图 6 所 示)。该加热器显著提高了试验中大型壳体结构内壁 温度分布的均一性,为大型高速航天飞行器的研发提

图 5 弹翼结构热-振联合试验^[66] Fig.5 Thermal-vibration joint test for missile wing^[66]

图 6 轴向非分段加热方式试验示意图^[68] Fig.6 Schematic diagram for axial non-segmented heating mode test^[68]

供了更为有效的高温热环境模拟手段[68]。

石英灯辐射加热在20世纪60年代的国内外结构 热实验室就已广泛采用,最典型的有 X-15 飞机机翼 载荷校核试验。在 20 世纪 70-90 年代, 主要是在更 新加热技术和开展综合环境试验技术等方面发展,其 中以石英灯与石墨加热元件的电加热等辐射加热设 备为主。在综合环境试验技术研究方面,国外的 NASA WRIGHT Patterson AFB OH 热噪声实验室用 500 根石 英灯加热,试件尺寸约1m×1m。NASA LANGLEY研 究中心用 12 个 2 500 W 的石英灯加热,试件尺寸达 1.25 m×1.25 m^[48,69]。当前,石英灯辐射加热方式在飞 行器热防护材料的防隔热性能测试领域仍应用广泛。例 如,美国宇航局的兰利研究中心(NASA LANGLEY)、 德莱顿飞行研究中心 (NASA DRYDEN)、空军研究实 验室(AFRL)以及德国航空航天中心(IABG)都采 用石英灯辐射加热作为模拟飞行器气动热环境的主 要方法。

虽然石英灯辐射加热具有诸多优势,既可做材料、试片甚至多种热防护材料组合的性能测试即热防护方案的选型测试,还能做热结构的考核,比如热模态试验、热强度试验等。但是在持续超过1200℃的高温热测试中,石英玻璃因高温软化导致灯管内气体膨胀,进而使得管壁变薄并最终破裂^[70-71](如图7所示)。因此,石英灯不适合1200℃以上的长时高温

热试验。此外,石英灯管的温度与灯管长度、功率、 灯管排布方式、灯管间距相关,而灯管排布若距离过 大,则会出现加热盲区的问题^[49]。

图 7 石英灯高温破坏前后对比^[71] Fig.7 Comparison of quartz lamp before and after high-temperature failure^[71]: a) initial state of quartz lamp; b) after high-temperature softening

4 高焓风洞试验技术

氧-乙炔、激光与石英灯多用于静态热加载,只 能模拟给定的热流,在不增添设备下不能模拟气流的 冲刷作用,同时还存在作用范围小、有加热死区、试 样表面接受到的热流与表面反射率相关等缺点。高焓 风洞(如图8所示)则具有总焓(或总温)高和可模 拟对流加热等优势[71]。高焓风洞由于其能够同时复现 高速气流和热流的特性,在模拟飞行器面临的气动热 效应及气流剪切影响方面扮演着关键角色。这类风洞 通常通过加热空气,使之以高速冲击试验模型,来实 现对气动热的模拟。高焓风洞试验是评估空空导弹外 防热性能较直接的方法之一,它通过高速气流模拟导 弹的实际飞行条件,包括高速、高温和高动态压力环 境。这种试验能够全面评估热防护系统的整体性能, 包括材料、结构和冷却系统的综合效应。根据不同的 气流加热机制,高焓风洞可分为多种类型,包括激波 风洞、蓄热式风洞、燃气式风洞和电弧风洞等^[13]。激 波风洞是在通入室温气流后,通过激波管产生可控激 波,并快速使气体加热、加速与加压的设备。蓄热式 风洞则是通过基础热交换作用,将通入的冷气体加 热。燃气式风洞通过燃烧产生热量与气体产物,从而 将气体加热到指定温度。电弧风洞则是使用电弧加热 冷空气。激波风洞因具备高焓值和快速试验周期而被 广泛应用于气动热效应研究,其主要用于冷壁热流的 测定,并不适合于热防护材料的测试与研究。相比之 下,其他类型的高焓风洞虽然焓值不及激波风洞,但 具备更长的工作时长,因此它们经常被应用于研究高 超声速飞行器的热防护系统。

图 8 高温结构风洞^[71] Fig.8 High-temperature structural wind tunnel^[71]

激波风洞是研究复杂外形高超声速飞行器气动 热环境的关键工具。尽管其试验周期较短暂,却能有 效地模拟飞行器所经历的热环境。利用激波风洞进行 的热流测量,能够揭示飞行器整体热环境的分布规 律,并为相关的数值模拟及工程计算方法的校验提供 宝贵的试验数据。目前美国 LENS I 激波风洞最大总 压可达到 200 MPa,试验时长可达 18 ms,日本 HIEST 激波风洞温度可高达 10 000 K^[72]。张志刚^[73]利用激 波风洞进行测热试验,揭示了飞行器热环境及关键部 位热流分布,助力数值和工程软件校验。Rogers 等^[74] 在 HyPulse 激波风洞测试了 X-43 A 发动机模型。Yao 等^[75]在 JF-12 风洞实现了马赫数 9.5 的氢燃料发动机 点火与燃烧过程。

蓄热风洞能产生与真实大气相同化学成分的气流环境,通过电加热或燃烧预先将热能储存于蓄热介质,待风洞启动时,迅速将这些热能转移给流过的空气^[76]。风洞的最高气体温度受限于所采用蓄热材料的

热稳定性。以高纯度氧化铝为蓄热介质时,风洞能够 达到约 2 000 K 的温度峰值。若改用氧化锆作为蓄热 材料,则理论上能够实现高达2500K的温度^[77]。蓄 热风洞能够生成高温且纯净的空气流,这对超燃冲压 发动机的测试至关重要,因为它确保了燃烧过程不受 外界污染的干扰。目前,全球已有多个用于高超声速 研究的风洞装备了蓄热式加热系统。例如, NASA 格 林研究中心的 HTF(高速风洞)运用了下吹式自由射 流技术,能够模拟出马赫数在 5~7 的飞行环境^[77-78]。 此外,美国通用科学实验室(GASL)的ATK-GASL leg IV 风洞^[79]、法国航空航天研究院的 S4 设施^[80]及日本 宇宙航空研究开发机构(JAXA)的 RJTF 设备等均 利用蓄热技术进行热防护试验^[81]。鉴于现有蓄热式风 洞可模拟的最高温度存在局限性,美国、法国和日本 正积极研发新型蓄热材料,如氧化锆和氧化钇。特别 是法国航空航天研究院的 S4 设施升级为使用氧化锆 材料后,能够产生高达2500K的纯净热气流^[82]。

燃气式风洞在运行过程中通过燃烧燃料和氧化 剂产生高温高压的燃气。这些燃气随后通过喷管被加 速,以此来模拟超声速流动中的高温气体状态。该风 洞能生成的最高气体温度接近于特定混合比下推进 剂的理论燃烧温度极限,通常可达到约3000 K^[13]。 燃气式风洞因其易干实现高加热功率的特点,在地面 热防护性能测试中对结构和部段级全尺寸模型的评 估中显示出明显的优点,尤其适用于推进系统综合性 能的测试。同时,该风洞在评估再入飞行器和其他高 速飞行条件下的防热材料、热防护系统部件及热结构 方面同样发挥着至关重要的作用。例如,北京航天长 征飞行器研究所首次利用 200 MW 高温燃气式风洞, 开展了1:1 全尺寸舱段模型的结构与热性能匹配试 验,成功模拟出了地面燃气式风洞环境中全尺寸舱段 模型表面的热环境^[83]。另外, NASA Langley 于 1964 年建立的8英尺(30.48 cm)高温结构风洞是较早用于 高温结构测试的设施之一, 它采用的是燃气式设计[71]。 当前,包括 CHSTF、GASL Leg IV、8 ft HHT 在内的 国外风洞,以及中国电子科技集团公司第十四研究所的 200 MW 高温燃起流风洞等,均采用燃气加热技术^[84-87]。 尽管如此,由于燃气式风洞的温度来源于燃烧过程, 其温度分布可能会受到喷嘴布局的影响,导致试验段 总温分布不均。此外, 燃烧生成物的气体组成与真实 飞行条件下的空气构成有显著差异,这样的差别可能 导致热防护材料在试验过程中出现不同的烧蚀现象, 进而影响试验数据的精确性。

电弧热风洞可以模拟高热流密度的环境,如图9 所示。其运作基于电弧对气体的加热作用,能产生高 达数千至数万度的热气流,用以复现超高速飞行器前 端压缩气体对飞行器的加热现象。不过,该风洞产生 的气流温度分布不甚均匀,有效试验时间短暂,并且 费用高昂。此外, 鉴于模拟高超声速高焓流动通常需 要使用大型飞行器模型以降低尺度误差,相关试验样 品的成本同样很高[88],因此电弧热风洞适合对热防护 系统进行最终的验证性考核。从20世纪50年代开始, 电弧风洞因其能够重现与实际飞行相似的高温气动 环境,成为测试高超声速飞行器热防护系统不可或缺 的设备。鉴于火星探测任务所遭遇的独特热挑战,自 20世纪70年代起,全球范围内开始普遍采用电弧加 热技术对各类工程样机实施热防护测试。这些型号包 括 Viking^[89-90]、Pathfinder^[91]、MSL^[92-95]、"火星快车" (Mars Express)^[96]及"天问一号"^[97]等,通过在不 同气体环境下进行了一系列试验,旨在探究防热材料 及结构的烧蚀特性,这些试验结果为设计高效的热防 护系统提供了宝贵的数据支持。同时,为了满足特定 飞行器的需求,多个国家的研究机构,包括美国 NASA 兰利研究中心 (LRC)^[98-100]、约翰逊航天中心 (JSC)^[101],德国宇航中心(DLR)^[102-104],意大利 宇航中心(CIRA)^[105],以及中国航天空气动力院

(CAAA)^[97]等研究机构,也在电弧风洞试验中研究 了使用 CO₂介质的情况,进行了相关的运行测试或评 估研究。

图 9 电弧风洞试验示意图^[105] Fig.9 Schematic diagram of arc flow wind tunnel test^[105]

上述 4 种高焓风洞可以同时模拟气动热以及气 流剪切作用,常用于模拟高温高速流动环境,它们在 航空航天、导弹防御和热防护材料研究中都发挥着重 要作用[71]。其中,激波风洞结构简单、启动迅速,可 产生高焓、高马赫数的气流,但由于其气流不稳定、 冷却效果差,只适用于短时间的试验研究^[73]。蓄热式 风洞则气流稳定、温度和压力可控,能进行长时间的 试验,适用于导弹在高温环境下热防护和结构完整性 等问题的研究^[76]。然而,其也存在启动时间长、热效 率较低、设备成本高等问题。燃气式风洞的优点在于 气流温度和压力可调范围大,可以模拟各种高焓环 境,适用于研究导弹高温高速时的气动热环境和热防 护材料等。其缺点则是设备复杂、温度不均匀、运行 成本高且维护困难[13]。电弧热风洞虽然存在气流不均 匀、成本昂贵、有效时间短等问题,但其作为一种可 以产生稳定高热流密度环境的风洞却是最适合作为 热防护系统最终考核验证的^[88]。

5 总结与展望

针对空空导弹超高声速飞行过程中热防护系统防隔热性能考核的需求,本文综述了氧-乙炔/等离子 烧蚀、激光辐照加热、石英灯辐射加热和高焓风洞模 拟四种主要测试方法的研究现状、优缺点及应用场 合,见表1。

热防护系统的地面考核是确保高速空空导弹安 全服役的关键。随着现代战争的需求,空空导弹正向 着远程打击、隐身性能提升、高速飞行、高度灵活性 以及精准制导等方向快速发展。随之而来的是,导弹 在飞行过程中所遭遇的气动热负荷变得更为严峻,这 就要求热防护系统必须经受更为严苛的地面测试和 评估,以确保其在实际作战中的可靠性和有效性。未 来空空导弹热防护系统测试方法的发展将呈现以下 特点:

•	65	•

	Tuoti common test une et ununon h	ethous for merma proteenon mat	inais and systems
测试方法	优点	缺点	应用场合
氧-乙炔/ 等离子烧蚀	操作简单,变量可控,成本较低, 可长时间作用	作用面积小、热流密度不可控、 温度不均匀且存在较大波动	对热流密度要求不高且不考虑热 气流作用下的考核,不适合较大结 构的试验,多用于热防护材料的烧 蚀性能考核
激光辐照加热	光斑直径可变且有一定大小、热 流密度高且稳定可控、试验装置 简单、成本低廉、可长时间作用	在较大光斑直径时功率密度难 以维持在较高水平,无法模拟 气流环境,能量呈高斯分布, 无法真实模拟气动热分布	树脂基复合材料领域、陶瓷基复合 材料领域及耐烧蚀涂层领域的材 料抗烧蚀性研究,也可用于驻点区 域的局部热防护性能考核
石英灯辐射加热	辐射面积大,温度均匀可控,热 惯性小、热效率高,易于电控, 设备体积小、功率大,可以组装 成不同的尺寸和形状,可做大型 结构的静热联合试验,可按实际 的热流曲线进行全弹道模拟	不适合 1 200 ℃以上的长时高 温热试验,易出现加热盲区, 无法模拟气流的剪切作用	既可做材料级(热防护材料)和试 片级(热防护系统)的防隔热性能 考核,也可做大型全尺寸热防护系 统及结构的热传导和热强度考核
高焓风洞模拟	可以同时模拟气动热以及气流剪 切作用	试验成本昂贵,不适合大型结 构加热,无法考核结构的热强 度,热流以台阶形式模拟,无 法复现真实飞行的热流曲线	复杂外形高超声速飞行器气动热 环境及高热流密度的环境研究,适 合对热防护系统进行最终的验证 性考核

表 1 热防护材料及热防护系统常用测试评价手段 Tab 1 Common test and evaluation methods for thermal protection materials and systems

1)优化加热形式、提升加热能力。针对热防护 系统测试评价的加热手段较少,且难以复现飞行器真 实飞行过程中的热流曲线,尤其是驻点以及弹体凸起 物的热环境模拟。同时,针对空空导弹的远程化、高 速度、高机动发展,现有测试技术难以实现长时间、 高升降温速率和大热梯度的加热。故需进一步优化测 试评价系统的加热形式,提升现有加热方式的能力, 以及控制系统的鲁棒性,更真实地模拟气流作用,如 多方面考虑提升石英灯辐射加热的温度上限、采用强 对流实现快速降温等;

2)利用数值模拟提升试验的控制精度和效率。 针对如风洞试验的复杂结构部件的试验流场等大规 模试验,未来可先通过计算机进行模拟试验,借助更 强的计算能力和算法构建更为精细的数值模型,细致 地捕捉气流与热防护材料和结构之间的相互作用,以 便精确且快速地控制系统调参,从而提升试验整体的 控制精度和效率。

3)建立极端服役条件下材料及结构热力学响应 信息的获取技术。目前极端环境条件下材料与结构表 面图像及形貌、变形、温度等信息的实时获取仍存在 诸多难点,但其对分析材料性能演化、结构响应及其 失效机制有重要意义。因此,在该条件下建立有效的 材料及结构热力学响应信息获取技术十分重要。

4)增强材料烧蚀过程在线观测技术。材料烧蚀 过程的在线观测是确保空空导弹热防护系统性能可 靠性和优化整体设计的关键所在。随着技术的不断进步,未来的在线观测技术将更加注重多尺度、多物理 场的综合观测能力,从而实现从微观分子动态到宏观 热流分布的全方位监测。同时,高分辨率的成像技术 和基于机器学习的智能图像分析算法的结合,将能够 显著提升在线观测的精度与效率。烧蚀过程在线监测 技术的革新也将为热防护系统的设计与验证提供更 大的便利,为空空导弹的性能提升和安全可靠性提供 基础。

参考文献:

- 罗楚养, 孙毓凯, 王文博, 等. 空空导弹结构技术的研究进展[J]. 航空兵器, 2019, 26(5): 1-10.
 LUO C Y, SUN Y K, WANG W B, et al. Research Progress on Structure Technology of Air-to-Air Missile[J].
 Aero Weaponry, 2019, 26(5): 1-10.
- [2] 桂业伟,唐伟,杜雁霞,等.临近空间高超声速飞行器 热安全[M].北京:国防工业出版社,2019.
 GUI Y W, TANG W, DU Y X. Thermal Safety Issues of Near-Space Hypersonic Vehicles[M]. Beijing: National Defense Industry Press, 2019.
- [3] 张钰. 结构热实验技术[M]. 北京: 宇航出版社, 1993.
 ZHANG Y. Structural Thermal Experimental Technology
 [M]. Beijing: Aerospace Press, 1993.
- [4] CHU P, MARKSBERRY C, SAARI D. High Temperature Storage Heater Technology for Hypersonic Wind Tunnels and Propulsion Test Facilities[C]// AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Virigina: AIAA, 2005.
- [5] BOUSLOG S, MOORE B, LAWSON I, et al. X-33 Metallic TPS Tests in NASA-LARC High Temperature Tunnel[C]// 37th Aerospace Sciences Meeting and Exhibit.

Virigina: AIAA, 1999.

- [6] ZIEMKE R. Infrared Heater Used in Qualification Testing of International Space Station Radiators[R]. Ohio: NASA/TM, 2004.
- [7] BAI D, FAN X J. Transient Coupled Heat Transfer in Multilayer Non-Gray Semitransparent Media with Reflective Foils[J]. International Journal of Thermophysics, 2006, 27(2): 647-664.
- [8] DARYABEIGI K. Thermal Analysis and Design of Multi-Layer Insulation for re-Entry Aerodynamic Heating[C]//35th AIAA Thermophysics Conference. Anaheim, CA, USA. Reston, Virigina: AIAA, 2001: AIAA2001-2834.
- [9] 秦强,成竹,蒋军亮.高超声速飞行器热-结构试验体系与发展概况[J]. 空天技术, 2023(4): 59-69.
 QIN Q, CHENG Z, JIANG J L. Thermal-Structure Test System and Development of Hypersonic Vehicles[J]. Aerospace Technology, 2023(4): 59-69.
- [10] 何西波, 崔占中, 王智勇. 热试验中的混合温度控制法研究[J]. 强度与环境, 2009, 36(5): 43-46.
 HE X B, CUI Z Z, WANG Z Y. Research of Compound Temperature Control in Thermal Test[J]. Structure & Environment Engineering, 2009, 36(5): 43-46.
- [11] 王智勇. 飞行器贮箱增压管路内外热力综合环境试验 研究[J]. 强度与环境, 2008, 35(1): 1-5.
 WANG Z Y. A Study of Ground Test on Pressure Piping of Vehicle Storage Tank[J]. Structure & Environment Engineering, 2008, 35(1): 1-5.
- [12] 马康智,李春,倪立勇,等.氧乙炔与等离子烧蚀试验的系统评价研究[J].材料导报,2022,36(11):249-253.
 MA K Z, LI C, NI L Y, et al. Research and Systematical Evaluation of Oxyacetylene and Plasma Ablation Tests[J]. Materials Reports, 2022, 36(11): 249-253.
- [13] 孙得川,李书月. 气动加热的数值仿真及其地面试验 模拟技术[J]. 航空兵器, 2023, 30(3): 11-19.
 SUN D C, LI S Y. Numerical Simulation of Aerodynamic Heating and Its Ground Test Simulation Technology[J].
 Aero Weaponry, 2023, 30(3): 11-19.
- [14] 孟显,潘文霞,吴承康. 层流等离子体射流温度与速度 测量[J]. 工程热物理学报, 2004, 25(3): 490-492.
 MENG X, PAN W X, WU C K. Temperature and Velocity Measurement of Laminar Plasma Jet[J]. Journal of Engineering Thermophysics, 2004, 25(3): 490-492.
- [15] 王昭, 戴佳, 赵星霖, 等. 直流电弧等离子体炬电极烧 蚀特性分析及实验测量[J]. 上海航天(中英文), 2020, 37(6): 115-119.
 WANG Z, DAI J, ZHAO X L, et al. Analysis and Experimental Measurement of Ablation Characteristics of

DC Arc Plasma Torch Electrode[J]. Aerospace Shanghai (Chinese & English), 2020, 37(6): 115-119.

 [16] 肖军,樊来恩,曾一兵.高速空空导弹外防热涂层选用 及试验[J]. 材料保护, 2022, 55(3): 157-161.
 XIAO J, FAN L E, ZENG Y B. Selection and Experiment of Outer Thermal Protective Coatings for High-Speed Air-to-Air Missiles[J]. Materials Protection, 2022, 55(3): 157-161.

- [17] 郭倩. C_f/ZrC-SiC复合材料抗氧化烧蚀性能研究[D]. 北京: 北京理工大学, 2016.
 GUO Q. Study on Anti-Oxidation and Ablation Properties of C_f/ZrC-SiC Composites[D]. Beijing: Beijing Institute of Technology, 2016.
- [18] 向阳, 莫琛, 彭志航, 等. 防隔热一体化 TPS 材料制备 及耐高温性能[J]. 材料工程, 2023, 51(8): 207-214. XIANG Y, MO C, PENG Z H, et al. Preparation and High Temperature Resistance Property of TPS Material with Integrated Thermal Insulation[J]. Journal of Materials Engineering, 2023, 51(8): 207-214.
- [19] 牟秀娟,姚璐璐,李洋,等. 蜂窝结构增强酚醛树脂基 复合材料制备及性能研究[J]. 高科技纤维与应用, 2023, 48(3): 27-33.
 MOU X J, YAO L L, LI Y, et al. Preparation and Properties of Honeycomb Structure Reinforced Phenolic Resin Matrix Composites[J]. Hi-Tech Fiber and Application, 2023, 48(3): 27-33.
- [20] 时圣波, 唐硕, 梁军. 临近空间飞行器防隔热/承载一体化热结构设计及力/热行为[J]. 装备环境工程, 2020, 17(1): 36-42.
 SHI S B, TANG S, LIANG J. Design and Thermomechanical Behavior of Full-Composite Structurally Integrated Thermal Protection Structure for near Space Vehicles[J]. Equipment Environmental Engineering, 2020, 17(1): 36-42.
- [21] SHI S B, CHEN Y, DAI C X, et al. Modeling the High Temperature Behavior of All-Composite, Corrugated-Core Sandwich Panels Undergoing Ablation[J]. Thin-Walled Structures, 2021, 164: 107742.
- [22] SHI S B, LI L J, LIANG J, et al. Surface and Volumetric Ablation Behaviors of SiFRP Composites at High Heating Rates for Thermal Protection Applications[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1190-1198.
- [23] 孙丹羽,朱世步,刘泰山,等. 超高温陶瓷改性 C/C 复合材料抗氧化烧蚀性能研究进展[J]. 材料导报, 2024, 38(S1): 112-122.
 SUN D Y, ZHU S B, LIU T S, et al. Research Progress on Oxidation and Ablation Resistance of Ultra-High Temperature Ceramic Modified C/C Composites[J]. Materials Reports, 2024, 38(S1): 112-122.
- [24] 聂景江, 徐永东, 张立同, 等. 三维针刺 C/SiC 在等离 子焰中的烧蚀行为[J]. 宇航材料工艺, 2009, 39(1): 53-57.
 NIE J J, XU Y D, ZHANG L T, et al. Plasma Arc Ablation Behavior of 3D Needled C/SiC Composites[J]. Aerospace Materials & Technology, 2009, 39(1): 53-57.
- [25] 章俭诚, 曾毅, 胡锦润, 等. C/SiC-ZrB₂-TiB₂ 复合材料 的双相流烧蚀性能及抗烧蚀机制[J]. 粉末冶金材料科 学与工程, 2023, 28(6): 565-579. ZHANG J C, ZENG Y, HU J R, et al. Biphasic Flow Ab-

lation Properties and Ablation Resistance Mechanisms of C/SiC-ZrB₂-TiB₂ Composites[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(6): 565-579.

- [26] 罗晓,陈晔松,康盼,等. TaC对SiC涂层高温耐烧蚀性能的影响[J]. 粉末冶金材料科学与工程,2023,28(2):120-128.
 LUO X, CHEN Y S, KANG P, et al. Effect of TaC on High Temperature Ablative Resistance of SiC Coatings[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(2):120-128.
- [27] SHI Y A, ZHA B L, SUN Z S, et al. Air Plasma Ablation/Erosion Test for 4D C/C Composites Used in the Throat of Solid Rocket Motor[J]. Ceramics International, 2022, 48(11): 15582-15593.
- [28] 王玉金,周玉,宋桂明,等. ZrC_P/W 复合材料的等离子 烧蚀行为[J].稀有金属材料与工程,2009,38(5):830-833.
 WANG Y J, ZHOU Y, SONG G M, et al. Plasma Ablation Behavior of ZrC_P/W Composites[J]. Rare Metal Materials and Engineering, 2009, 38(5): 830-833.
- [29] 王富强,陈建,张智,等. W-SiC-C/C 复合材料制备及 等离子烧蚀性能[J]. 表面技术, 2022, 51(2): 249-258.
 WANG F Q, CHEN J, ZHANG Z, et al. Preparation and Plasma Flame Ablation Resistance of W-SiC-C/C Composites[J]. Surface Technology, 2022, 51(2): 249-
- [30] **李**彩. 复杂热载荷下固体火箭冲压发动机绝热层烧蚀 特性研究[D]. 南京: 南京理工大学, 2021.
 LI F. Study on Ablation Characteristics of Insulation Layer of Solid Rocket Ramjet under Complex Thermal Load[D]. Nanjing: Nanjing University of Science and Technology, 2021.
- [31] 周朴. 我国高功率光纤激光技术学科方向的历程、现状、挑战与建议[J]. 红外与激光工程, 2023, 52(7): 131-139.
 ZHOU P. Review on the Discipline of High Power Fiber Laser in China[J]. Infrared and Laser Engineering, 2023, 52(7): 131-139.
- [32] ZHANG J D, BI R, JIANG S D, et al. Laser Ablation Mechanism and Performance of Carbon Fiber-Reinforced Poly Aryl Ether Ketone (PAEK) Composites[J]. Polymers, 2022, 14(13): 2676.
- [33] MA C, MA Z, GAO L H, et al. Zirconium Carbide-Modified Polymer-Matrix Composites with Improved Reflectivity under High-Energy Laser Ablation[J]. Ceramics International, 2019, 45(14): 17681-17687.
- [34] 于庆春, 万红. 片状石墨增强树脂基复合材料的耐激 光烧蚀性能研究[J]. 无机材料学报, 2012, 27(2): 157-161.

YU Q C, WAN H. Ablation Capability of Flake Graphite Reinforced Barium-Phenolic Resin Composite under Long Pulse Laser Irradiation[J]. Journal of Inorganic Materials, 2012, 27(2): 157-161.

[35] XU F, ZHU S Z, MA Z, et al. Effect of TaSi2/ZrSi2 on Ablation Properties of Carbon-Phenolic Composite Irradiated by High-Intensity Continuous Laser[J]. Ceramics International, 2020, 46(18): 28443-28450.

- [36] ZOU C R, LI B, MENG X J, et al. Ablation Behavior and Mechanism of SiO₂f/SiO₂, SiO₂f/BN and Si₃N₄f/BN Radar Wave Transparent Composites[J]. Corrosion Science, 2018, 139: 243-254.
- [37] DANIEL A, BADHE Y, SRIKANTH I, et al. Laser Shielding and Thermal Ablation Characteristics of Resorcinol Formaldehyde/Boron Nitride Composites for Thermal Protection Systems[J]. Industrial & Engineering Chemistry Research, 2016, 55(40): 10645-10655.
- [38] 殷金其. 航天热防护材料的烧蚀特性研究[J]. 固体火 箭技术, 1993, 16(4): 84-91.
 YIN J Q. Study of Ablative Characteristics of Materials Used for Space Thermal Protection System[J]. JOurnal of Solid Rocket Technology, 1993, 16(4): 84-91.
- [39] LIU Q M, ZHANG L T, JIANG F R, et al. Laser Ablation Behaviors of SiC–ZrC Coated Carbon/Carbon Composites[J]. Surface and Coatings Technology, 2011, 205(17/18): 4299-4303.
- [40] WEN Q B, LUAN X G, WANG L, et al. Laser Ablation Behavior of SiHfC-Based Ceramics Prepared from a Single-Source Precursor: Effects of Hf-Incorporation into SiC[J]. Journal of the European Ceramic Society, 2019, 39(6): 2018-2027.
- [41] ZHUANG Y P, BI R, ZHU J M, et al. Multiscale Ablation Mechanism and Performance of 2.5D Si₃N₄ F/SiBN-CMCS under Continuous-Wave Laser Irradiation[J]. Journal of the European Ceramic Society, 2023, 43(11): 4706-4716.
- [42] 孔静, 马壮, 高丽红, 等. La_{1-x}Sr_xTiO_{3+δ} 陶瓷涂层抗激 光烧蚀性能研究[J]. 现代技术陶瓷, 2018, 39(2): 115-121.
 KONG J, MA Z, GAO L H, et al. Anti-Laser Ablation

Property of $La_{1-x}Sr_xTiO_{3+\delta}Ceramic Coating[J]$. Advanced Ceramics, 2018, 39(2): 115-121.

- [43] XU F, ZHU S Z, MA Z, et al. Ablation Behavior of Inorganic Particle-Filled Polybenzoxazine Composite Coating Irradiated by High-Intensity Continuous Laser[J]. Ceramics International, 2019, 45(12): 14968-14975.
- [44] XU W Y, GAO L H, MA C, et al. Design and Preparation of Composite Coatings with Increased Reflectivity under High-Energy Continuous Wave Laser Ablation[J]. Ceramics International, 2020, 46(15): 23457-23462.
- [45] WANG H H, KONG J G, GE J, et al. Effects of Reflectivity on Laser-Ablation Resistance of the Laser-Cladding Repaired Nd₂O₃ Modified SiO₂ Coatings on C/C Composites[J]. Journal of the European Ceramic Society, 2021, 41(13): 6548-6558.
- [46] 陶杰, 承涵, 陈照峰, 等. 聚碳硅烷复合涂层抗激光烧 蚀研究[J]. 宇航材料工艺, 2008, 38(2): 39-42.
 TAO J, CHENG H, CHEN Z F, et al. Laser Ablation-Resistance of Polycarbosilane Composite Coatings[J]. Aerospace Materials & Technology, 2008, 38(2): 39-42.

- [47] 李雅娣, 吴平, 马喜梅, 等. 氧化锆涂层在激光防护中的应用研究[J]. 表面技术, 2008, 37(3): 71-74.
 LI Y D, WU P, MA X M, et al. Study on Application of Zirconia Coating in Laser Protection[J]. Surface Technology, 2008, 37(3): 71-74.
- [48] 王乐善,王庆盛. 结构热试验技术的新发展[J]. 导弹与 航天运载技术, 2000(2): 7-13.
 WANG L S, WANG Q S. The Recent Trends of Thermal-Test Technique of Structure[J]. Missiles and Space Vehicles, 2000(2): 7-13.
- [49] 陈新. 基于石英灯阵列的大梯度变化热环境模拟试验 设计方法[D]. 哈尔滨:哈尔滨工业大学, 2021. CHEN X. Design Method of Thermal Environment Simulation Test with Large Gradient Change Based on Quartz Lamp Array[D]. Harbin: Harbin Institute of Technology, 2021.
- [50] 吴彦增, 孙晓娜, 王成亮, 等. 基于石英灯辐射加热的 型材压损试验系统研制及应用[J]. 工程与试验, 2020, 60(4): 75-77.
 WU Y Z, SUN X N, WANG C L, et al. Development and Application of Crippling Failure Test System Based on Quartz Radiation Heating[J]. Engineering & Test, 2020,
- [51] TURNER T, ASH R. Analysis of the Thermal Environment and Thermal Response Associated with Thermal-Acoustic Testing[C]// 31st Structures, Structural Dynamics and Materials Conference. Long Beach, CA, USA. Reston, Virigina: AIAA, 1990: AIAA1990-975.

60(4): 75-77.

- [52] MICHAEL D A V, ANDERSON K F. Thermal-Structural Test Facilities at NASA Dryden: NASA-TM-104249[R]. Hauppauge: Technical Memorandum, 1992.
- [53] 夏吝时,齐斌,田宁,等.石英灯电热特性建模分析及 测试方法研究[J]. 红外技术, 2015, 37(10): 877-882.
 XIALS, QIB, TIAN N, et al. Study on Modeling Analysis and Testing Method of Electro-Thermal Properties of Quartz Lamp[J]. Infrared Technology, 2015, 37(10): 877-882.
- [54] 吴松,胡宇鹏,李翀,等.适应瞬态高温过载环境的加载装置设计及试验研究[J]. 装备环境工程, 2021, 18(3): 101-106.
 WU S, HU Y P, LI C, et al. The Design of Overloaded Transient Thermal Testing Apparatus to Simulate re-Entry Heating and Testing Techniques[J]. Equipment Environmental Engineering, 2021, 18(3): 101-106.
- [55] 张军,许阳阳,张运法,等. 石英灯辐射加热条件下低 密度碳/酚醛复合材料高温响应及分析[J]. 装备环境工 程, 2020, 17(1): 51-57. ZHANG J, XU Y Y, ZHANG Y F, et al. High Temperature Response and Analysis of Low Density Carbon Fiber/Phenolic Composites under Quartz Lamp Radiation Heating[J]. Equipment Environmental Engineering, 2020, 17(1): 51-57.
- [56] APPEL G, BAER K, KNAPP T. Thermomechanical Test Facility of HERMES Winglet Box[C]//5th International

Aerospace Planes and Hypersonics Technologies Conference. Munich, Germany. Reston, Virigina: AIAA, 1993: AIAA1993-5087.

[57] 邓婉,朱尚龙,周文勇,等.复合材料气瓶热防护材料 隔热性能试验研究[J]. 宇航材料工艺, 2021, 51(6): 54-58.

DENG W, ZHU S L, ZHOU W Y, et al. Experimental Study on the Heat Insulation Performance of Thermal Protection Materials Used for the Composite Materials Gas Cylinder[J]. Aerospace Materials & Technology, 2021, 51(6): 54-58.

[58] 李健,张凡,张丽娟,等. 一种耐高温多层热防护组件 结构设计与性能研究[J]. 北京理工大学学报, 2019, 39(10): 1051-1056.
LI J, ZHANG F, ZHANG L J, et al. Structure Design and Performance Study of a Multi-Layer Thermal Protection Component with High Temperature Endurance[J]. Transactions of Beijing Institute of Technology, 2019, 39(10): 1051-1056.

[59] 刘岩,张伟.基于热真空环境模拟试验技术的信号电缆热防护方案研究[J].电子测量技术,2019,42(9): 69-73.

LIU Y, ZHANG W. Research of Signal Cables Thermal Protection Scheme Based on Thermal Vacuum Environment-Simulating Test[J]. Electronic Measurement Technology, 2019, 42(9): 69-73.

- [60] 丁智力,路梓照,赵培想,等.某飞行器前端连接处力 热耦合试验技术研究[J].环境技术,2022,40(S1): 47-51.
 DING Z L, LU Z Z, ZHAO P X, et al. Experimental Analysis of Mechanical and Thermal Coupling at the Front End of an Aircraft[J]. Environmental Technology, 2022,40(S1):47-51.
- [61] 宋若康,张梦珊,戴珍,等. 烧蚀型防热/吸波多功能一体化复合材料的制备及性能[J]. 复合材料学报, 2024, 41(1): 271-280.
 SONG R K, ZHANG M S, DAI Z, et al. Preparation and Properties of Multi-Functional Composite Integrated with Heat-Shielding and Radar-Absorbing[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 271-280.
 [62] SHI S B, WANG Y F, YAN L, et al. Coupled Ablation and
- [62] SHI S B, WANG Y F, YAN L, et al. Coupled Ablation and Thermal Behavior of an All-Composite Structurally Integrated Thermal Protection System: Fabrication and Modeling[J]. Composite Structures, 2020, 251: 112623.
- [63] 时圣波, 雷宝, 张云天, 等. 硅橡胶基防热涂层烧蚀和 热响应特性预报方法[J]. 航空学报, 2023, 44(23): 277-289.
 SHI S B, LEI B, ZHANG Y T, et al. Prediction Method of Ablation and Thermal Response for a Thermal Protection Coating with Silicone Rubber[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 277-289.
- [64] 吴大方,房元鹏,张敏. 高速飞行器瞬态气动热试验模 拟系统[J]. 航空计测技术, 2003, 23(1): 9-11.
 WU D F, FANG Y P, ZHANG M. Experimental Simula-

tion System of Transient Aerodynamic Heating for High-Speed Flight Vehicle[J]. Aviation Metrology & Measurement Technology, 2003, 23(1): 9-11.

- [65] 郑力铭, 吴大方, 王岳武, 等. 金属蜂窝板高温环境下的隔热性能试验与计算[J]. 北京航空航天大学学报, 2012, 38(6): 731-735. ZHENG L M, WU D F, WANG Y W, et al. Experiment and Numerical Simulation on Heat-Shielding Properties of Metallic Honeycomb Panel in High Temperature Environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(6): 731-735.
- [66] 吴大方,赵寿根,潘兵,等.高速巡航导弹翼面结构热-振联合试验研究[J].航空学报,2012,33(9):1633-1642.
 WU D F, ZHAO S G, PAN B, et al. Research on Thermal-Vibration Joint Test for Wing Structure of High-Speed Cruise Missile[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1633-1642.
- [67] WU D F, SU F, LIU C X, et al. Experimental Study on Mechanical Behaviors of Al-Alloys under Transient Aerodynamic Heating[J]. International Journal of Mechanics and Materials in Design, 2010, 6(4): 331-340.
- [68] 吴大方, 潘兵, 王岳武, 等. 大型壳体结构内壁轴向非 分段式热环境试验研究[J]. 导弹与航天运载技术, 2014(2): 44-47.
 WU D F, PAN B, WANG Y W, et al. Research on

Non-Segmentation Thermal Environment Experiment of the Inner Wall along the Axial Direction for a Large Shell Structure[J]. Missiles and Space Vehicles, 2014(2): 44-47.

[69] 吴大方, 潘兵, 郑力铭, 等. 高超声速飞行器材料与结构气动热环境模拟方法及试验研究[J]. 航天器环境工程, 2012, 29(3): 250-258.
 WU D F, PAN B, ZHENG L M, et al. Aerodynamic

Heating Simulation Method and Testing Technique for Materials and Structures of Hypersonic Flight Vehicles[J]. Spacecraft Environment Engineering, 2012, 29(3): 250-258.

[70] 吴大方,潘兵,高镇同,等.超高温、大热流、非线性 气动热环境试验模拟及测试技术研究[J].实验力学, 2012, 27(3): 255-271.

WU D F, PAN B, GAO Z T, et al. On the Experimental Simulation of Ultra-High Temperature, High Heat Flux and Nonlinear Aerodynamic Heating Environment and Thermo-Mechanical Testing Technique[J]. Journal of Experimental Mechanics, 2012, 27(3): 255-271.

- [71] 卢明. 热防护材料气动热环境的试验模拟研究[D]. 大连: 大连理工大学, 2019.
 LU M. Experimental Research on Aerodynamic Heating Environment for Thermal Protection Materials[D]. Dalian: Dalian University of Technology, 2019.
 [72] 曾慧,杨鸿,罗义成,等. 现有高超声速设备的试验能
- 力局限综述[J]. 飞航导弹, 2021(8): 17-23. ZENG H, YANG H, LUO Y C, et al. Review of the Limitations of the Experimental Capability of Existing Hypersonic Equipment [J]. Aerodynamic Missile Journal,

2021(8): 17-23.

- [73] 张志刚. 高超声速飞行器热防护系统设计方法[D]. 哈尔滨:哈尔滨工业大学, 2014. ZHANG Z G. Design Method of Thermal Protection System on Hypersonic[D]. Harbin: Harbin Institute of Technology, 2014.
- [74] ROGERS R, SHIH A, HASS N. Scramjet Development Tests Supporting the Mach 10 Flight of the X-43[C]// AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Capua, Italy. Reston, Virigina: AIAA, 2005: AIAA2005-3351.
- [75] 姚轩宇, 王春, 喻江, 等. JF12 激波风洞高 Mach 数超 燃冲压发动机实验研究[J]. 气体物理, 2019, 4(5): 25-31.

YAO X Y, WANG C, YU J, et al. High-Mach-Number Scramjet Engine Tests in JF12 Shock Tunnel[J]. Physics of Gases, 2019, 4(5): 25-31.

- [76] 黄河激, 潘文霞, 吴承康. 高超声速风洞用蓄热式加热器[C]// 第三届高超声速科技学术会议. 无锡:中国力学学会, 2010.
 HUANG H J, PAN W X, WU C K. Storage Heater for Hypersonic Wind Tunnels[C]// The 3rd Hypersonic Technology Academic Conference. Wuxi: Chinese Society of Mechanics, 2010.
- [77] 罗飞腾,宋文艳,李卫强. 高温纯净空气风洞加热技术的应用与发展[J]. 世界科技研究与发展, 2010, 32(6): 827-831.
 LUO F T, SONG W Y, LI W Q. Application and Development of Clean Air Heater Technology for High Temperature Wind Tunnel[J]. World Sci-Tech R\$D, 2010, 32(6): 827-831.
- [78] SMITH D M, FELDERMAN E J. NASA Glenn Research Center's Hypersonic Tunnel Facility[M]. Reston: AIAA, 2002: 427-439.
- [79] GOYNE C, CRESCI D. Hy-V Program Overview and Status[C]// 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Virigina: AIAA, 2008.
- [80] SERRE L. ONERA Potential for Scramjet Ground Testing up to Mach 12[C]// AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Virigina: AIAA, 2005.
- [81] TOMIOKA S, HIRAIWA T, KOBAYASHI K, et al. Vitiation Effects on Scramjet Engine Performance in Mach 6 Flight Conditions[J]. Journal of Propulsion and Power, 2007, 23(4): 789-796.
- [82] SERRE L. Development of S4 Free Jet Test Facility for the French LEA Flight Test Program[C]// 16th AIAA/ DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. Virigina: AIAA, 2009.
- [83] 赵玲,李文浩,岳晖,等.高温燃气流风洞全尺寸舱段 热结构试验技术研究[J]. 气体物理, 2021, 6(5): 44-50.
 ZHAO L, LI W H, YUE H, et al. Thermal Structure Test

- [84] AVERY D, KERR P, WIETING A. Experimental Aerodynamic Heating to Simulated Shuttle Tiles[C]// 18th Thermophysics Conference. Virigina: AIAA, 1983.
- [85] ZHAO L, ZHANG X, QI B, et al. An Experimental and Computational Study of Freestream Condition in an Oxygen/Oil Gas-Jet Facility[C]// 2018 Asia-Pacific International Symposium on Aerospace Technology. Chengdu: Springer Singapore, 2019.
- [86] HUNT L R, BOHON H. Performance of LI-1542 Reusable Surface Insulation System in a Hypersonic Stream [R]. Hampton, Virginia: NASA Langley Research Center, 1976.
- [87] ROGERS R, CAPRIOTTI D, GUY R. Experimental Supersonic Combustion Research at NASA Langley[C]// 20th AIAA Advanced Measurement and Ground Testing Technology Conference. Albuquerque, NM, USA. Reston, Virigina: AIAA, 1998: AIAA1998-2506.
- [88] 姜宗林. 高超声速高焓风洞试验技术研究进展[J]. 空 气动力学学报, 2019, 37(3): 347-355.
 JIANG Z L. Progresses on Experimental Techniques of Hypersonic and High-Enthalpy Wind Tunnels[J]. Acta Aerodynamica Sinica, 2019, 37(3): 347-355.
- [89] CONGDON W, EDQUIST C, HENLINE W. Thermal Protection Studies for the 1966 Pathfinder Mission to Mars[C]//32nd Aerospace Sciences Meeting and Exhibit. Reno, NV, USA. Reston, Virigina: AIAA, 1994: AIAA1994-249.
- [90] STRAUSS E L. Superlight Ablative Systems for Mars Lander Thermal Protection[J]. Journal of Spacecraft and Rockets, 1967, 4(10): 1304-1309.
- [91] WILLCOCKSON W H. Mars Pathfinder Heatshield Design and Flight Experience[J]. Journal of Spacecraft and Rockets, 1999, 36(3): 374-379.
- [92] DRIVER D M, CARBALLO J E, BECK R, et al. Arcjet Testing in Shear Environment for Mars Science Laboratory Thermal Protection System[J]. Journal of Spacecraft and Rockets, 2014, 51(4): 1151-1166.
- [93] BECK R A S, DRIVER D M, WRIGHT M J, et al. Development of the Mars Science Laboratory Heatshield Thermal Protection System[J]. Journal of Spacecraft and Rockets, 2014, 51(4): 1139-1150.
- [94] LAUB B, WHITE S. Arcjet Screening of Candidate Ablative Thermal Protection Materials for Mars Science Laboratory[J]. Journal of Spacecraft and Rockets, 2006, 43(2): 367-373.
- [95] LABASTE V, MIGNOT Y. EADS Launch Vehicles Main Achievements for Planetary Exploration Missions[C]// Hot Structures and Thermal Protection Systems for Space

Vehicles, Noordwijk: [s. n.], 2003.

[96] 杨昌昊, 祁玉峰, 饶炜, 等. 天问一号火星探测器气动 热防护系统设计与实现[J]. 中国科学: 技术科学, 2022, 52(2): 253-263.

YANG C H, QI Y F, RAO W, et al. Design and Implementation of the Aerodynamic Thermal Protection System for the Tianwen-1 Mars Probe[J]. Scientia Sinica (Technologica), 2022, 52(2): 253-263.

- [97] SPLINTER S, BEY K, GRAGG J, et al. Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility[C]// 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Virigina: AIAA, 2011.
- [98] SZALAI C, BECK R, GASCH M, et al. Thermal Protection System Aerothermal Screening Tests in the HYMETS Facility[C]// 42nd AIAA Thermophysics Conference. Virigina: AIAA, 2011.
- [99] DANEHY P, HIRES D, JOHANSEN C, et al. Quantitative Spectral Radiance Measurements in the HYMETS Arc Jet[C]// 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Virigina: AIAA, 2012.
- [100] DELPAPA S V, SUESS L, SHAFER B. The Development of a CO₂ Test Capability in the NASA JSC ARCJet for Mars Reentry Simulation[C]// 8th futemational Planetary Probe Workshop. Parkway: [s. n.], 2011.
- [101] GÜLHAN A, ESSER B, KOCH U, et al. Mars Entry Simulation in the Arc Heated Facility L2K[C]//Fourth Symposium on Aerothermodynamics for Space Vehicles. Capua: [s. n.], 2002.
- [102] KOCH U, RIEHMER J, ESSER B, et al. Laser Induced Fluorescence and Diode Laser Absorption Spectroscopy Measurements in CO/CO₂ Hypersonic Flow of LBK[C]// 6th European Symposium on Aerothermodynamics for Space Vehicles. Versailles: [s. n.], 2009.
- [103] ESSER B, GÜLHAN A, KOCH U, et al. Particle Erosion Tests in Martian Atmosphere[C]// 7th European Symposium on Aerothermodynamics for Space Vehicles. Brugge: [s. n.], 2011.
- [104] MARIEU V, REYNIER P, MARRAFFA L, et al. Evaluation of SCIROCCO Plasma Wind-Tunnel Capabilities for Entry Simulations in CO₂ Atmospheres[J]. Acta Astronautica, 2007, 61(7/8): 604-616.
- [105] 罗万清. 电弧风洞高焓流场天地差异性与参数模拟方法研究[D]. 长沙: 国防科技大学, 2020.
 LUO W Q. Study on the Difference of High Enthalpy Flow Field between Flight and Ground and the Parameter Simulation Method in Arc-Heated Wind Tunnel[D]. Changsha: National University of Defense Technology, 2020.